Environmental Management

, Volume 14, Issue 5, pp 725–736 | Cite as

Recovery processes in lotic ecosystems: Limits of successional theory

  • Stuart G. Fisher
Section 5: Theoretical Bases For Defining And Predicting Lotic Community Recovery


The concept of succession has a distinguished history in general ecology and has been applied to stream ecosystems with some success. Succession in streams is largely secondary, follows initial floristics models, and occurs through a variety of mechanisms. The process is moderately predictable but is highly influenced by “climatic” factors, particularly nutrient chemistry. In desert streams, succession does not result in a climax state. While evidence is slim, succession may not be a significant process in streams of certain types or in certain regions.

Successional theory is difficult to apply in spatially heterogeneous, hierarchically organized ecosystems. It also suffers in being only one component of a better integrated concept, that of ecosystem stability, which deals more directly with disturbance and ecosystem resistance in addition to resilience (which encompasses succession). Succession has so suffered from a half century of confusion that a strong case can be made for abandoning the term, at least as it applies in streams, in favor of the broader view provided by stability theory.

Key words

Succession Disturbance Stability Streams Ecosystems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, T. W., and L. A. Goodman. 1957. Statistical inference about Markov chains.Annals of Mathematical Statistics 28:89–110.Google Scholar
  2. Biggs, B. J. F. 1988. Algal proliferations in New Zealand's shallow stony foothills-fed rivers: toward a predictive model.Internationale Vereinigung für Theoretische und Angewandt Limnologie, Verhandlungen 23:1405–1411.Google Scholar
  3. Blum, J. L. 1956. The application of the climax concept to algal communities of streams.Ecology 37:603–604.CrossRefGoogle Scholar
  4. Boulton, A. J., and P. J. Suter. 1986. Ecology of temporary streams—an Australian perspective. Pages 313–327in P. DeDeckker and W. D. Williams (eds.), Limnology in Australia CSIRO/Junk Publishers, Melbourne.Google Scholar
  5. Busch, D. E. 1979. The patchiness of diatom distribution in a desert stream.Journal of the Arizona-Nevada Academy of Science 14:43–46.Google Scholar
  6. Butcher, R. W. 1947. Studies in the ecology of rivers. VII. The algae of organically enriched water.Journal of Ecology 35:186–191.Google Scholar
  7. Cattaneo, A., S. Ghittori, and V. Vendegna. 1975. The development of benthonic phytocoenosis on artificial substrates in the Ticino River.Oecologia (Berlin) 19:315–327.Google Scholar
  8. Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. Publ. 424. Carnegie Institute, Washington, DC.Google Scholar
  9. Clements, F. E. 1936. Nature and structure of the climax.Journal of Ecology 24:552–584.Google Scholar
  10. Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization.American Naturalist 111:1119–1144.CrossRefGoogle Scholar
  11. Cowles, H. C. 1901. The physiographic ecology of Chicago and vicinity: a study of the origin, development, and classification of plant societies.Botanical Gazette 31:73–108.CrossRefGoogle Scholar
  12. Dimond, J. B. 1967. Pesticides and stream insects. Bulletin 23. Maine Forest Service. 21 pp.Google Scholar
  13. Drury, W. H., and I. C. T. Nisbet. 1973. Succession.Journal of the Arnold Arboretum 54:331–368.Google Scholar
  14. Egler, F. E. 1954. Vegetation science concepts I. Initial floristics composition, a factor in old field vegetation development.Vegatatio 4:412–417.CrossRefGoogle Scholar
  15. Finegan, B. 1984. Forest succession.Nature 312:109–114.Google Scholar
  16. Fisher, S. G. 1983. Succession in streams. Pages 7–27in J. R. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York. 399 pp.Google Scholar
  17. Fisher, S. G., L. J. Gray, N. B. Grimm, and D. E. Busch. 1982. Temporal succession in a desert stream following flash flooding.Ecological Monographs 52:93–110.CrossRefGoogle Scholar
  18. Fisher, S. G., and L. J. Gray. 1983. Secondary production and organic matter processing by collector macroinvertebrates in a desert stream.Ecology 64:1217–1224.CrossRefGoogle Scholar
  19. Fisher, S. G., and N. B. Grimm. 1988. Disturbance as a determinant of structure in a Sonoran desert stream.Internationale Vereinigung für Theoretische und Angewandt Limnologie, Verhandlungen 23:1183–1189.Google Scholar
  20. Fisher, S. G., H. M. Valett, N. B. Grimm and E. H. Stanley. 1988. Disturbance and the hyporheic zone: influence on stream ecosystem metabolism.Bulletin of the North American Benthological Society 5:96.Google Scholar
  21. Frissell, C. A., W. J. Liss, C. E. Warren and M. D. Hurley. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context.Environmental Management 10:199–214.CrossRefGoogle Scholar
  22. Gleason, H. A. 1926. The individualistic concept of the plant association.Bulletin of the Torrey Botanical Club 44:1–20.Google Scholar
  23. Gray, L. J. 1980. Recolonization pathways and community development of desert stream macroinvertebrates. PhD dissertation. Arizona State University, Tempe, Arizona. 176 pp.Google Scholar
  24. Gray, L. J. 1981. Species composition and life histories of aquatic insects in a lowland Sonoran desert stream.American Midland Naturalist 106:229–242.CrossRefGoogle Scholar
  25. Gray, L. J., and S. G. Fisher. 1981. Postflood recolonization pathways of macroinvertebrates in a lowland Sonoran desert stream, Sycamore Creek, Arizona.American Midland Naturalist 106:249–257.CrossRefGoogle Scholar
  26. Grimm, N. B. 1988. Feeding dynamics, nitrogen budgets, and ecosystem role of a desert stream omnivore,Agosia chrysogaster (Pisces: Cyprinidae).Environmental Biology of Fishes 21:143–152.Google Scholar
  27. Grimm, N. B., and S. G. Fisher. 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling.Hydrobiologia 111:219–228.Google Scholar
  28. Grimm, N. B., and S. G. Fisher. 1986. Nitrogen limitation in a Sonoran desert stream.Journal of the North American Benthological Society 5:2–15.CrossRefGoogle Scholar
  29. Grimm, N. B., and S. G. Fisher. 1988. Successional patterns in a desert stream: effect of season, nutrient limitation, and disturbance frequency and magnitude.Bulletin of the North American Benthological Society 5:96.Google Scholar
  30. Grimm, N. B., and S. G. Fisher. 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream.Journal of North American Benthological Society 8:293–307.CrossRefGoogle Scholar
  31. Gurtz, M. E. 1984. Effects of disturbance regimes on stream biota. Symposium on Long-Term Research at Coweeta. ms. 38 pp.Google Scholar
  32. Hannan, H. H., and T. C. Dorris. 1970. Succession of a macrophyte community in a constant temperature river.Limnology and Oceanography 15:442–453.CrossRefGoogle Scholar
  33. Hart, D. D. 1983. The importance of competitive interactions within stream populations and communities. Pages 99–136in J. Barnes and G. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York. 399 pp.Google Scholar
  34. Hawkes, H. A. 1975. River zonation and classification. Pages 312–374in B. A. Whitton (ed.), River ecology. University of California Press, Berkeley. 725 pp.Google Scholar
  35. Hemphill, N., and S. D. Cooper. 1983. The effect of physical disturbance on the relative abundances of two filter-feeding insects in a small stream.Oecologia 58:378–382.CrossRefGoogle Scholar
  36. Horn, H. S. 1974. The ecology of secondary succession.Annual Review of Ecology and Systematics 5:25–37.CrossRefGoogle Scholar
  37. Hoopes, R. L. 1974. Flooding, as the result of Hurricane Agnes, and its effect on a macrobenthic community in an infertile headwater stream in central Pennsylvania.Limnology and Oceanography 19:853–857.Google Scholar
  38. Illies, J., and L. Botosaneanu. 1963. Problems et methods de la classification et de la zonation ecologique de eaux covrantes, considerées surtout du point de vue faunistique.Internationale Vereiningung für Theoretische und Angewandte Limnologie, Mitteilungen 12:1–57.Google Scholar
  39. Jackson, J. K. 1984. Aquatic insect emergence from a desert stream. MS thesis. Arizona State University, Tempe, Arizona. 82 pp.Google Scholar
  40. Jackson, J. K. 1987. Diel emergence, swarming and longevity of selected adult aquatic insects from a Sonoran desert stream.American Midland Naturalist 119:344–352.CrossRefGoogle Scholar
  41. Likens, G. E. 1970. Eutrophication and aquatic ecosystems. Pages 3–13in G. E. Likens (ed.), Nutrients and eutrophication. American Society of Limnology and Oceanography Special Symposium 1. Allen Press, Lawrence, KS.Google Scholar
  42. Loehle, C. 1987. Hypothesis testing in ecology: psychological aspects and the importance of theory maturation.Quarterly Review of Biology 62:397–409.CrossRefGoogle Scholar
  43. Margalef, R. 1960. Ideas for a synthetic approach to the ecology of running waters.Internationale Revue der Gesamten Hydrobiologie 45:133–153.Google Scholar
  44. Margalef, R. 1963. On certain unifying principles in ecology.American Naturalist 97:357–374.CrossRefGoogle Scholar
  45. Margalef, R. 1968. Perspectives in ecological theory. University of Chicago Press, Chicago. 111 pp.Google Scholar
  46. McAuliffe, J. 1984. Competition for space, disturbance, and the structure of a benthic stream community.Ecology 65:894–908.CrossRefGoogle Scholar
  47. McIntosh, R. P. 1980. The relationship between succession and the recovery process in ecosystems. Pages 11–62in J. Cairns (ed.), The recovery process in damaged ecosystems. Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  48. McLay, C. 1970. A theory concerning the distance travelled by animals entering the drift of a stream.Journal of the Fisheries Research Board of Canada 27:359–370.Google Scholar
  49. Miles, J. 1987. I. Vegetation succession: past and present perceptions. Pages 1–29in A. J. Gray, M. J. Crawley and P. J. Edwards (eds.), Colonization, succession and stability, 26th Symposium, British Ecological Society. Blackwell Scientific Publications, Oxford, UK.Google Scholar
  50. Miller, A. R., R. L. Lowe, and J. T. Rotenberry. 1987. Succession of diatom communities on sand grains.Journal of Ecology 75:693–709.Google Scholar
  51. Milner, A. M. 1987. Colonization and ecological development of new streams in Glacier Bay National Park, Alaska.Freshwater Biology 18:53–70.Google Scholar
  52. Minckley, W. L. 1963. The ecology of a spring stream, Doe Run, Mcade County, Kentucky.Wildlife Monographs 11:1–124.Google Scholar
  53. Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing, and R. L. Vannote. 1983a. Interbiome comparison of stream ecosystem dynamics.Ecological Monographs 53:1–25.CrossRefGoogle Scholar
  54. Minshall, G. W., D. A. Andrews, and C. Y. Manuel-Faler. 1983b. Application of island biogeographic theory to streams: macroinvertebrate recolonization of the Teton River, Idaho. Pages 279–298in J. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York. 399 pp.Google Scholar
  55. Newbold, J. D., J. W. Elwood, R. V. O'Neill, and W. Van Winkle. 1981. Measuring nutrient spiralling in streams.Canadian Journal of Fisheries and Aquatic Sciences 38:860–863.CrossRefGoogle Scholar
  56. Odum, E. P. 1969. The strategy of ecosystem development.Science 164:262–270.Google Scholar
  57. Odum, H. T. 1956. Primary production in flowing waters.Limnology and Oceanography 1:102–117.Google Scholar
  58. Peckarsky, B. L. 1985. Do predaceous stoneflies and siltation affect the structure of stream insect communities colonizing enclosures?Canadian Journal of Zoology 63:1519–1530.CrossRefGoogle Scholar
  59. Peckarsky, B. L. 1986. Colonization of natural substrates by stream benthos.Canadian Journal of Fisheries and Aquatic Sciences 43:700–709.Google Scholar
  60. Peterson, C. G. 1987. Influences of flow regime on development and desiccation response of lotic diatom communities.Ecology 68:946–954.CrossRefGoogle Scholar
  61. Pickett, S. T. A. and P. S. White. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, New York.Google Scholar
  62. Pickett, S. T. A., S. L. Collins and J. J. Armesto. 1987. A hierarchical consideration of causes and mechanisms of succession.Vegatatio 69:109–114.CrossRefGoogle Scholar
  63. Power, M. E., and A. J. Stewart. 1987. Disturbance and recovery of an algal assemblage following flooding in an Oklahoma stream.American Midland Naturalist 117:333–345.CrossRefGoogle Scholar
  64. Reice, S. R. 1985. Experimental disturbance and the maintenance of species diversity in a stream community.Oecologia 67:90–97.CrossRefGoogle Scholar
  65. Reiners, W. A., and G. E. Lang. 1978. Vegetational patterns and processes in the balsam fir zone, White Mountains, New Hampshire.Ecology 60:403–417.CrossRefGoogle Scholar
  66. Rodhe, W. 1969. Crystallization of eutrophication concepts in Europe. Pages 50–64in Eutrophication: causes, consequences and correctives. National Academy of Sciences, Washington, DC.Google Scholar
  67. Roemer, S. C., K. D. Hoagland, and J. R. Rosowski. 1984. Development of a freshwater periphyton community as influenced by diatom mucilages.Journal of Botany 62:1799–1813.CrossRefGoogle Scholar
  68. Shelford, V. E. 1911. Ecological succession. II. Pond fishes.Biological Bulletin 21(3):127–151.Google Scholar
  69. Skinner, W. D. and D. E. Arnold. 1988. Absence of temporal succession of invertebrates in Pennsylvania streams.Bulletin of the North American Benthological Society 5(1):63.Google Scholar
  70. Statzner, B., and B. Higler. 1985. Questions and comments on the river continuum concept.Canadian Journal of Fisheries and Aquatic Sciences 42:1038–1044.Google Scholar
  71. Stevenson, R. J. 1983. Effect of current and conditions simulating autogenically changing microhabitats on benthic diatom immigration.Ecology 64:1514–1524.CrossRefGoogle Scholar
  72. Usher, M. B. 1979. Markovian approaches to ecological succession.Journal of Animal Ecology 48:413–426.Google Scholar
  73. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The river continuum concept.Canadian Journal of Fisheries and Aquatic Sciences 37:130–137.CrossRefGoogle Scholar
  74. Walde, S. J. 1986. Effect of an abiotic disturbance on a lotic predator-prey interaction.Oecologia 69:243–247.CrossRefGoogle Scholar
  75. Ward, A. K., J. A. Baross, C. N. Dahm, M. D. Lilley, and J. R. Sedell. 1983. Qualitative and quantitative observations on aquatic algal communities and recolonization within the blast zone of Mt. St. Helens, 1980 and 1981.Journal of Phycology 19:238–247.CrossRefGoogle Scholar
  76. Webster, J. R., J. B. Waide and B. C. Patten. 1975. Nutrient cycling and the stability of ecosystems. Pages 1–27in F. G. Howell, J. B. Gentry, and M. H. Smith (eds.), Mineral cycling in southeastern ecosystems. ERDA Symposium Series, Washington, D.C.Google Scholar
  77. Webster, J. R., M. E. Gurtz, J. J. Hains, J. L. Meyer, W. T. Swank, J. B. Waide, and J. B. Wallace. 1983. Stability of stream ecosystems. Pages 355–395in J. R. Barnes and G. W. Minshall (eds.), Stream ecology. Plenum Press, New York. 399 pp.Google Scholar
  78. Williams, W. T., G. N. Lance, L. J. Webb, J. B. Tracey, and J. H. Connell. 1969. Studies in the numerical analysis of complex rainforest communities. IV. A method for the elucidation of small scale forest pattern.Journal of Ecology 57:635–654.Google Scholar
  79. Winterbourn, M. J., J. S. Rounick, and B. Cowie. 1981. Are New Zealand stream ecosystems really different?New Zealand Journal of Marine and Freshwater Research 15:321–328.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Stuart G. Fisher
    • 1
  1. 1.Department of ZoologyArizona State UniversityTempeUSA

Personalised recommendations