Environmental Management

, Volume 14, Issue 5, pp 589–604 | Cite as

Recovery of lotic periphyton communities after disturbance

  • Alan D. Steinman
  • C. David McIntire
Section 2: The Bole Of Life Hostory And Behavioral Characteristics


Periphyton communities represent potentially excellent candidates for assessing the recovery of lotic ecosystems after disturbance. These communities are ubiquitous, relatively easy to sample and measure (in terms of total community biomass), have short generation times, and may influence the recovery rates of higher trophic levels. The first section of this article analyzes how site availability, species availability, and differential species performance influence periphyton successional dynamics. This background information provides a foundation for understanding how periphytic organisms respond after a disturbance. The second section of this article analyzes how periphyton communities respond to four different types of disturbance (flood events, desiccation, organic nutrient enrichment, and toxic metal exposure). Although data are limited, it is concluded that the fast growth rates and short generation times of periphytic organisms, coupled with their flexible life history strategies and good dispersal ability, allow lotic periphyton communities to recover relatively quickly after a disturbance. In addition, disturbance type and severity, local environmental conditions, and site-specific factors also will influence recovery rates.

Future research needs include a better understanding of: (1) what periphyton property(ies) would serve as the best index of recovery; (2) whether or not the robustness of this index varies among different environments and different disturbances; (3) interactions between autotrophs and heterotrophs within the periphyton mat, particularly with respect to nutrient cycling; (4) competitive interactions among organisms; (5) functional redundancy of organisms; and (6) the influence of the riparian zone and channel geomorphology on periphyton recovery rates.

Key words

Desiccation Disturbance Floods Periphyton Streams Succession Toxic pollutants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, D. M., and F. M. M. Morel. 1978. Copper sensitivity ofGonyaulax tamarensis.Limnology and Oceanography 23:283–295.Google Scholar
  2. Baars, J. W. M. 1983. Autecological investigations on freshwater water diatoms I. Generation times of some species.Archives für Hydrobiologie/Supplementbande 67:11–18.Google Scholar
  3. Blinn, D. W., A. Fredericksen, and V. Korte. 1980. Colonization rates and community structure of diatoms on three different rock substrata in a lotic system.British Phycological Journal 15:303–310.Google Scholar
  4. Bold, H. C., and M. J. Wynne. 1985. Introduction to the algae. Prentice-Hall, Englewood Cliff, New Jersey. 720 pp.Google Scholar
  5. Bothwell, M. L. 1988. Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment: the influence of light and temperature.Canadian Journal of Fisheries and Aquatic Sciences 45:261–270.CrossRefGoogle Scholar
  6. Brock, T. D., and J. Clyne. 1984. Significance of algal excretory products for growth of epilimnetic bacteria.Applied and Environmental Microbiology 47:731–734.Google Scholar
  7. Brown, D. S. 1961. The food of the larvae ofCloeon dipterum L. andBaetis rhodani (Pictet) (Insecta, Ephemeroptera).Journal of Animal Ecology 30:55–75.Google Scholar
  8. Cairns, J., Jr. 1982. Freshwater protozoan communities. Pages 249–285in A. J. Bull and A. R. K. Watkinson (eds.), Microbial interactions and communities. Academic Press, London.Google Scholar
  9. Caron, D. A., J. C. Goldman, and M. R. Dennett. 1988. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles.Hydrobiologia 159:27–40.Google Scholar
  10. Coleman, A. W. 1983. The roles of resting spores and akinetes in chlorophyte survival. Pages 1–21in G. A. Fryxell (ed.), Survival strategies of the algae. Cambridge University Press, Cambridge.Google Scholar
  11. Cuker, B. E. 1983. Grazing and nutrient interactions in controlling the activity and composition of the epilithic algal community of an arctic lake.Limnology and Oceanography 28:133–141.Google Scholar
  12. Cummins, K. W., J. R. Sedell, F. J. Swanson, G. W. Minshall, S. G. Fisher, C. E. Cushing, R. C. Petersen, and R. L. Vannote. 1983. Organic matter budgets for stream ecosystems: problems in their evaluation. Pages 299–353in J. R. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York.Google Scholar
  13. Currie, D. J., and J. Kalff. 1984. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater.Limnology and Oceanography 29:311–321.Google Scholar
  14. DeAngelis, D. L. 1980. Energy flow, nutrient cycling, and ecosystem resilience.Ecology 61:764–771.CrossRefGoogle Scholar
  15. DeAngelis, D. L., P. J. Mulholland, J. W. Elwood, A. V. Palumbo, and A. D. Steinman. 1990. Biogeochemical cycling constraints on stream ecosystem recovery.Environmental Management 14:685–698.Google Scholar
  16. Dickman, M. 1968. The effect of grazing by tadpoles on the structure of a periphyton community.Ecology 49:1188–1190.CrossRefGoogle Scholar
  17. Dickman, M. D., and M. B. Gochnauer. 1978. Impact of sodium chloride on the microbiota of a small stream.Environmental Pollution 17:109–126.CrossRefGoogle Scholar
  18. Douglas, B. 1958. The ecology of the attached diatoms and other algae in a small stony stream.Journal of Ecology 46:295–322.Google Scholar
  19. Eichenberger, E., and K. Wuhrmann. 1975. Growth and photosynthesis during the formation of a benthic algal community.Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 19:2035–2042.Google Scholar
  20. Eichenberger, E., F. Schlatter, H. Weilenmann, and K. Wuhrmann. 1981. Toxic and eutrophicating effects of Co, Cu, and Zn on algal benthic communities in rivers.Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 21:1131–1134.Google Scholar
  21. Evans, J. H. 1959. The survival of freshwater algae during dry periods II. Drying experiments. III. Stratification of algae in pond margin litter and mud.Journal of Ecology 47:55–81.Google Scholar
  22. Fisher, S. G., L. J. Gray, N. B. Grimm, and D. E. Busch. 1982. Temporal succession in a desert stream ecosystem following flash flooding.Ecological Monographs 52:93–110.CrossRefGoogle Scholar
  23. Flint, R. W., and C. R. Goldman. 1975. The effects of a benthic grazer on the primary productivity of the littoral zone of Lake Tahoe.Limnology and Oceanography 20:935–944.CrossRefGoogle Scholar
  24. Foster, P. L. 1977. Copper exclusion as a mechanism of heavy metal tolerance in a green alga.Nature 269:322–323.CrossRefGoogle Scholar
  25. Frissell, C. A., W. J. Liss, C. E. Warren, and M. D. Hurley. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context.Environmental Management 10:199–214.CrossRefGoogle Scholar
  26. Goldsborough, L. G., and G. C. G. Robinson. 1986. Changes in periphytic algal community structure as a consequence of short herbicide exposures.Hydrobiologia 139:177–192.CrossRefGoogle Scholar
  27. Gregory, S. V. 1983. Plant-herbivore interactions in stream systems. Pages 157–189in J. R. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York.Google Scholar
  28. Grimm, N. B. 1987. Nitrogen dynamics during succession in a desert stream.Ecology. 68:1157–1170.CrossRefGoogle Scholar
  29. Grimm, N. B., and S. G. Fisher. 1986. Nitrogen limitation in a Sonoran desert stream.Journal of the North American Benthological Society 5:2–15.CrossRefGoogle Scholar
  30. Grimm, N. B., and S. G. Fisher. 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream.Journal of the North American Benthological Society 8:293–307.CrossRefGoogle Scholar
  31. Haack, T. K., and G. A. McFeters. 1982. Nutritional relationships among microorganisms in an epilithic biofilm community.Microbial Ecology 8:115–126.CrossRefGoogle Scholar
  32. Hamilton, P. B., and H. C. Duthie. 1984. Periphyton colonization of rock surfaces in a boreal forest stream studied by scanning electron microscopy and track autoradiography.Journal of Phycology 20:525–532.CrossRefGoogle Scholar
  33. Harding, J. P. C., and B. A. Whitton. 1976. Resistance to zinc ofStigeoclonium tenue in the field and the laboratory.British Phycological Journal 11:417–426.Google Scholar
  34. Hart, B. T. 1982. Uptake of trace metals by sediments and suspended particulates: a review.Hydrobiologia 91:299–313.Google Scholar
  35. Henebry, M. S., and J. Cairns, Jr. 1980. Monitoring of stream pollution using protozoan communities on artificial substrates.Transactions of the American Microscopic Society 99:151–160.Google Scholar
  36. Hill, W. R., and A. W. Knight. 1988. Nutrient and light limitation in two northern California streams.Journal of Phycology 24:125–132.Google Scholar
  37. Hoagland, K. D., S. C. Roemer, and J. R. Rosowski. 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophy-ceae).American Journal of Botany 69:188–213.CrossRefGoogle Scholar
  38. Holling, C. D. 1973. Resilience and stability of ecological systems.Annual Review of Ecology and Systematics 4:1–24.CrossRefGoogle Scholar
  39. Horner, R. R., and E. B. Welch. 1981. Stream periphyton development in relation to current velocity and nutrients.Canadian Journal of Fisheries and Aquatic Sciences 38:449–457.CrossRefGoogle Scholar
  40. Hudon, C., and E. Bourget. 1981. Initial colonization of artificial substrate: community development and structure studied by scanning electron microscopy.Canadian Journal of Fisheries and Aquatic Sciences 38:1371–1384.Google Scholar
  41. Hudon, C., and E. Bourget. 1983. The effect of light on the vertical structure of epibenthic diatom communities.Botanica Marina 26:317–330.Google Scholar
  42. Hughes, R. M., D. P. Larsen, T. R. Whittier, and C. M. Rohm. 1990. A regional framework for establishing recovery criteria.Environmental Management 14:673–684.Google Scholar
  43. Hynes, H. B. N. 1963. The biology of polluted waters. Liverpool University Press, Liverpool. 202 pp.Google Scholar
  44. Jensen, T. E., J. W. Rachlin, V. Jani, and B. Warkentine. 1982. An x-ray energy dispersive study of cellular compartmentalization of lead and zinc inChlorella saccharophila (Chlorophyta),Navicula incerta andNitzschia closterium (Bacillariophyta).Environmental and Experimental Botany 22:319–328.CrossRefGoogle Scholar
  45. Jordan, T. L., and J. T. Staley. 1976. Electron microscopic study of succession in the periphyton community of Lake Washington.Microbial Ecology 2:241–251.CrossRefGoogle Scholar
  46. Kaufman, L. H. 1980. Stream aufwuchs accumulation processes: effects of ecosystem depopulation.Hydrobiologia 70:75–81.CrossRefGoogle Scholar
  47. Kaufman, L. H. 1982. Stream aufwuchs accumulation: disturbance frequency and stress resistance and resilience.Oecologia 52:57–63.CrossRefGoogle Scholar
  48. Klotz, R. L., J. R. Cain, and F. R. Trainor. 1976. Algal competition in an epilithic river flora.Journal of Phycology 12:363–368.CrossRefGoogle Scholar
  49. Korte, V. L., and D. W. Blinn. 1983. Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy.Journal of Phycology 19:332–341.CrossRefGoogle Scholar
  50. Kuhn, D. L., and J. L. Plafkin. 1977. The influence of organic pollution on the dynamics of artificial island colonization by protozoa.Bulletin of the Ecological Society of America 58:14.Google Scholar
  51. Lamberti, G. A., and J. W. Moore. 1984. Aquatic insects as primary consumers. Pages 164–195in V. H. Resh and D. M. Rosenberg (eds.), The ecology of aquatic insects. Praeger Publishers, New York.Google Scholar
  52. Lamberti, G. A., and V. H. Resh. 1983. Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population.Ecology 64:1124–1135.CrossRefGoogle Scholar
  53. Lamberti, G. A., L. R. Ashkenas, S. V. Gregory, and A. D. Steinman. 1987. Effects of three herbivores on periphyton communities in laboratory streams.Journal of the North American Benthological Society 6:92–104.CrossRefGoogle Scholar
  54. Lamberti, G. A., S. V. Gregory, L. R. Ashkenas, R. C. Wildman, and A. D. Steinman. 1990. Influence of channel geomorphology on retention of dissolved and particulate matter in a Cascade Mountain stream. Pages 000–000in D. Abell (ed.), Californian riparian systems. US Forester Service.Google Scholar
  55. Lock, M. A., and T. E. Ford. 1985. Microcalorimetric approach to determine relationships between energy supply and metabolism in river epilithon.Applied and Environmental Microbiology 49:408–412.Google Scholar
  56. Lock, M. A., R. R. Wallace, and D. R. Barton. 1981a. The effects of synthetic crude oil on microbial and macroinvertebrate benthic river communities. Part I: Colonisation of synthetic crude oil contaminated substrata.Environmental Pollution (Series A) 24:207–217.CrossRefGoogle Scholar
  57. Lock, M. A., R. R. Wallace, and D. R. Barton. 1981b. The effects of synthetic crude oil on microbial and macroinvertebrate benthic river communities. Part II: The response of an established community to contamination by synthetic crude oil.Environmental Pollution (Series A) 24:263–275.CrossRefGoogle Scholar
  58. Lock, M. A., R. R. Wallace, and D. W. S. Westlake. 1982. Biodegradation of synthetic crude oil in two rivers of Northern Alberta, Canada.Water Research 16:497–500.CrossRefGoogle Scholar
  59. Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo, and S. E. Charlton. 1984. River epilithon: toward a structural-functional model.Oikos 42:10–22.Google Scholar
  60. Losee, R. F., and R. G. Wetzel. 1983. Selective light attenuation by the periphyton complex. Pages 89–96in R. G. Wetzel (ed.), Periphyton of freshwater ecosystems. Junk Publishers, The Hague.Google Scholar
  61. Lowe, R., S. W. Golladay, and J. R. Webster. 1986. Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds.Journal of the North American Benthological Society 5:221–229.CrossRefGoogle Scholar
  62. Lubchenco, J., and S. D. Gaines. 1981. A unified approach to marine plant-herbivore interactions. I. Populations and communities.Annual Review of Ecology and Systematics 12:405–437.CrossRefGoogle Scholar
  63. Luttenton, M. R., and R. G. Rada. 1986. Effects of disturbance on epiphytic community architecture.Journal of Phycology 22:320–326.Google Scholar
  64. May, R. 1975. Stability in ecosystems: some comments. Pages 161–169in W. H. Van Dobben and R. H. Lowe McConnell (eds.), Unifying concepts in ecology. Junk Publishers, The Hague.Google Scholar
  65. McIntire, C. D. 1966. Some effects of current velocity on periphyton communities in laboratory streams.Hydrobiologia 27:559–570.CrossRefGoogle Scholar
  66. McIntire, C. D. 1968. Structural characteristics of benthic algal communities in laboratory streams.Ecology 49:520–537.CrossRefGoogle Scholar
  67. McKnight, D. M., and G. L. Feder. 1984. The ecological effect of acid conditions and precipitation of hydrous metal oxides in a Rocky Mountain stream.Hydrobiologia 119:129–138.CrossRefGoogle Scholar
  68. Miller, A. R., R. L. Lowe, and J. T. Rottenberry. 1987. Succession of diatom communities on sand grains.Journal of Ecology 75:693–709.Google Scholar
  69. Morison, M. O., and R. G. Sheath. 1985. Responses to desiccation stress byKlebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream.Phycologia 24:129–145.Google Scholar
  70. Müller-Haeckel, A., and H. Hakansson. 1978. The diatomflora of a small stream near Abisko (Swedish Lappland) and its annual periodicity, judged by drift and colonization.Archives für Hydrobiologie 84:199–217.Google Scholar
  71. Oemke, M. P., and T. M. Burton. 1986. Diatom colonization dynamics in a lotic system.Hydrobiologia 139:153–166.CrossRefGoogle Scholar
  72. Opler, R. A., H. G. Baker, and G. W. Frankie. 1975. Recovery of tropical lowland forest ecosystems. Pages 372–421in J. Cairns, Jr. (ed.), Recovery and restoration of damaged ecosystems. University of Virginia Press, Charlottesville.Google Scholar
  73. Patrick, R. 1967. The effect of invasion rate, species pool, and size of area on the structure of the diatom community.Proceedings of the National Academy of Sciences 58:1335–1342.Google Scholar
  74. Patrick, R. 1969. Diatom communities. Pages 151–164in J. Cairns, Jr. (ed.), The structure and function of fresh-water microbial communities. Virginia Polytechnic Institute and State University Press, Blacksburg.Google Scholar
  75. Perkins, M. A., and L. A. Kaplan. 1978. Epilithic periphyton and detritus studies in a subalpine stream.Hydrobiologia 57:103–109.CrossRefGoogle Scholar
  76. Perrin, C. J., M. L. Bothwell, and P. A. Slaney. 1987. Experimental enrichment of a coastal stream in British Columbia: effects of organic and inorganic additions on autotrophic periphyton production.Canadian Journal of Fisheries and Aquatic Sciences 44:1247–1256.Google Scholar
  77. Peterson, C. G. 1987. Influences of flow regime on development and desiccation response of lotic diatom communities.Ecology 68:946–954.CrossRefGoogle Scholar
  78. Peterson, C. G., and R. J. Stevenson. 1989. Substratum conditioning and diatom colonization in different current regimes.Journal of Phycology 25:790–793.CrossRefGoogle Scholar
  79. Peterson, H. G., F. P. Healey, and R. Wagemann. 1984. Metal toxicity to algae: a highly pH dependent phenomenon.Canadian Journal of Fisheries and Aquatic Sciences 41:974–979.CrossRefGoogle Scholar
  80. Pianka, E. 1970. On r- and K-selection.American Naturalist 100:33–46.CrossRefGoogle Scholar
  81. Pickett, S. T. A., and P. S. White. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, London. 472 pp.Google Scholar
  82. Pickett, S. T. A., S. L. Collins, and J. J. Armesto. 1987. Models, mechanisms, and pathways of succession.Botanical Reviews 53:335–371.CrossRefGoogle Scholar
  83. Pontasch, K. W., and M. A. Brusven. 1987. Periphyton response to a gasoline spill in Wolf Lodge Creek, Idaho.Canadian Journal of Fisheries and Aquatic Sciences 44:1669–1673.Google Scholar
  84. Power, M. E., and A. J. Stewart. 1987. Disturbance and recovery of an algal assemblage following flooding in an Oklahoma stream.American Midland Naturalist 117:333–345.CrossRefGoogle Scholar
  85. Pringle, C. M. 1987. Effects of water and substratum nutrient supplies on lotic periphyton growth: an integrated bioassay.Canadian Journal of Fisheries and Aquatic Sciences 44:619–629.Google Scholar
  86. Reisen, W. K., and D. J. Spencer. 1970. Succession and current demand relationships of diatoms on artificial substrates in Prater's Creek, South Carolina.Journal of Phycology 6:117–121.CrossRefGoogle Scholar
  87. Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace, and R. Wissmar. 1988. The role of disturbance in stream ecology.Journal of the North American Benthological Society 7:433–455.CrossRefGoogle Scholar
  88. Rheinheimer, G. 1985. Aquatic microbiology. John Wiley & Sons, New York. 257 pp.Google Scholar
  89. Riber, H. H., and R. G. Wetzel. 1987. Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton.Limnology and Oceanography 32:1181–1194.Google Scholar
  90. Robinson, C. T., and S. R. Rushforth. 1987. Effects of physical disturbance and canopy cover on attached diatom community structure in an Idaho stream.Hydrobiologia 154:49–59.CrossRefGoogle Scholar
  91. Roemer, S. C., K. D. Hoagland, and J. R. Rosowski. 1984. Development of a freshwater periphyton community as influenced by diatom mucilages.Canadian Journal of Botany 62:1799–1813.Google Scholar
  92. Rose, F. L. and C. E. Cushing. 1970. Periphyton: autoradiography of zinc-65 adsorption.Science 168:576–577.Google Scholar
  93. Rosowski, J. R., K. D. Hoagland, and J. E. Aloi. 1986. Structural morphology of diatom-dominated stream biofilm communities under the impact of soil erosion. Pages 247–299in L. V. Evans and K. D. Hoagland (eds.), Algal biofouling. Elsevier, Amsterdam.Google Scholar
  94. Rushforth, S. R., L. E. Squires, and C. E. Cushing. 1986. Algal communities of springs and streams in the Mt. St. Helens region, Washington, U.S.A. following the May 1980 eruption.Journal of Phycology 22:129–137.Google Scholar
  95. Say, P. J., B. M. Diaz, and B. A. Whitton. 1977. Influence of zinc on lotic plants. I. Tolerance ofHormidium species to zinc.Freshwater Biology 7:357–376.Google Scholar
  96. Scrimgeour, G. J., and M. J. Winterbourn. 1989. Effects of floods on epilithon and benthic macroinvertebrate populations in an unstable New Zealand river.Hydrobiologia 171:33–44.CrossRefGoogle Scholar
  97. Sheath, R. G., and J. M. Burkholder. 1985. Characteristics of softwater streams in Rhode Island. II. Composition and seasonal dynamics of macroalgal communities.Hydrobiologia 128:109–118.CrossRefGoogle Scholar
  98. Shehata, F. H. A., and B. A. Whitton. 1982. Zinc tolerance in strains of the blue-green algaAnacystis nidulans.British Phycological Journal 17:5–12.Google Scholar
  99. Shephard, K. L. 1987. Evaporation of water from the mucilage of a gelatinous algal community.British Phycological Journal 22:181–185.Google Scholar
  100. Shortreed, K. S., and J. G. Stockner. 1983. Periphyton biomass and species composition in a coastal rainforest stream in British Columbia: effects of environmental changes caused by logging.Canadian Journal of Fisheries and Aquatic Sciences 40:1887–1895.Google Scholar
  101. Sicko-Goad, L. M., and E. F. Stoermer. 1979. A morphometric study of lead and copper effects onDiatoma tenue var.elongatum (Bacillariophyceae).Journal of Phycology 15:316–321.CrossRefGoogle Scholar
  102. Silverberg, B. A. 1975. Ultrastructural localization of lead inStigeoclonium tenue (Chlorophyceae, Ulotricales) as demonstrated by cytochemical and x-ray analysis.Phycologia 14:265–274.Google Scholar
  103. Steinman, A. D., and C. D. McIntire. 1986. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams.Journal of Phycology 22:352–361.Google Scholar
  104. Steinman, A. D., and C. D. McIntire. 1987. Effects of irradiance on the community structure and biomass of algal assemblages in laboratory streams.Canadian Journal of Fisheries and Aquatic Sciences 44:1640–1648.Google Scholar
  105. Steinman, A. D., and A. F. Parker. 1990. Influence of substratum conditioning on periphytic growth in a heterotrophic woodland stream.Journal of the North American Benthological Society 9:170–179.CrossRefGoogle Scholar
  106. Steinman, A. D., C. D. McIntire, S. V. Gregory, G. A. Lamberti, and L. R. Ashkenas. 1987a. Effects of herbivore type and density on taxonomic structure and physiognomy of algal assemblages in laboratory streams.Journal of the North American Benthological Society 6:175–188.CrossRefGoogle Scholar
  107. Steinman, A. D., C. D. McIntire, and R. R. Lowry. 1987b. Effects of herbivore type and density on chemical composition of algal assemblages in laboratory streams.Journal of the North American Benthological Society 6:189–197.CrossRefGoogle Scholar
  108. Stevenson, R. J. 1983. Effects of current and conditions simulating autogenically changing microhabitats on benthic diatom immigration.Ecology 64:1514–1524.CrossRefGoogle Scholar
  109. Stevenson, R. J. 1986. Importance of variation in algal immigration and growth rates estimated by modelling benthic algal colonization. Pages 193–210in L. V. Evans and K. D. Hoagland (eds.), Algal biofouling. Elsevier, Amsterdam.Google Scholar
  110. Stevenson, R.J., and C. G. Peterson. 1989. Variation in benthic diatom (Bacillariophyceae) immigration with habitat characteristics and cell morphology.Journal of Phycology 25:120–129.CrossRefGoogle Scholar
  111. Stokes, P. M., T. C. Hutchinson, and K. Krauter. 1973. Heavy-metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario.Canadian Journal of Botany 51:2155–2168.CrossRefGoogle Scholar
  112. Sumner, W. T., and C. D. McIntire. 1982. Grazer-periphyton interactions in laboratory streams.Archives für Hydrobiologie 93:135–157.Google Scholar
  113. Sunda, W., and R. R. L. Guillard. 1976. The relationship between cupric ion activity and the toxicity of copper to phytoplankton.Journal of Marine Research 34:511–529.Google Scholar
  114. Wallace, J. B. 1990. Recovery of lotic macroinvertebrate communities from disturbance.Environmental Management 14:605–620.Google Scholar
  115. Wangberg, S., and H. Blanck. 1988. Influence of phosphate on inhibition of carbon dioxide fixation by arsenate in microalgal communities.Journal of Phycology (Supplement) 24:27.Google Scholar
  116. Weber, C. I. 1973. Recent developments in the measurement of the response of plankton and periphyton to changes in their environment. Pages 119–138in G. E. Glass (ed.), Bioassay techniques and environmental chemistry. Ann Arbor Science Publ., Ann Arbor, Michigan.Google Scholar
  117. Wheeler, P. A., and D. L. Kirchman. 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems.Limnology and Oceanography 31:998–1009.CrossRefGoogle Scholar
  118. Whitford, L. A., and G. L. Schumacher. 1964. Effect of current on respiration and mineral uptake inSpirogyra andOedogonium.Ecology 45:168–170.CrossRefGoogle Scholar
  119. Whittier, T. R., R. M. Hughes, and D. P. Larsen. 1988. Correspondence between ecoregions and spatial patterns in stream ecosystems in Oregon.Canadian Journal of Fisheries and Aquatic Sciences 45:1264–1278.Google Scholar
  120. Wolman, M. G., and J. P. Miller. 1960. Magnitude and frequency of forces in geomorphic processes.Journal of Geology 68:54–74.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Alan D. Steinman
    • 1
  • C. David McIntire
    • 2
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA

Personalised recommendations