Environmental Management

, Volume 17, Issue 3, pp 343–353 | Cite as

A national critical loads framework for atmospheric deposition effects assessment: III. Deposition characterization

  • Bruce Hicks
  • Robert McMillen
  • Robert S. Turner
  • George R. HoldrenJr
  • Timothy C. Strickland
Research

Abstract

Methods are discussed for describing patterns of current wet and dry deposition under various scenarios. It is proposed that total deposition data across an area of interest are the most relevant in the context of critical loads of acidic deposition, and that the total (i.e., wet plus dry) deposition will vary greatly with the location, the season, and the characteristics of individual subregions. Wet and dry deposition are proposed to differ in such fundamental ways that they must be considered separately. Both wet and dry deposition rates are controlled by the presence of the chemical species in question in the air (at altitudes of typically several kilometers in the case of wet deposition, and in air near the surface for dry). The great differences in the processes involved lead to the conclusion that it is better to measure wet and dry deposition separately and combine these quantifications to produce “total deposition” estimates than to attempt to derive total deposition directly. A number of options for making estimates of total deposition to be used in critical loads assessment scenarios are discussed for wet deposition (buckets and source receptor models) and for dry deposition (throughfall, micrometeorology, surrogate surfaces and collection vessels, inference from concentrations, dry-wet ratios, and source-receptor models).

Key Words

Wet deposition Dry deposition Micrometeorology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baldocchi, D. D., B. B. Hicks, and P. Camara. 1987. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces.Atmospheric Environment 21:91–101.CrossRefGoogle Scholar
  2. Cadle, S. H., J. M. Dash and P. A. Mulawa. 1985. Atmospheric concentrations and the deposition velocity to snow of nitric acid, sulfur dioxide and various particulate species.Atmospheric Environment 19:1819–1827.CrossRefGoogle Scholar
  3. Chameides, W. L. 1987. Acid dew and the role of chemistry in the dry deposition of reactive gases to wetted surfaces.Journal of Geophysical Research 92:11,895–11,908.Google Scholar
  4. Galloway, J. N., and A. Gaudry. 1984. The composition of precipitation on Amsterdam Island, Indian Ocean.Atmospheric Environment 18:2649–2656.CrossRefGoogle Scholar
  5. Granat, L., and C. Johannson. 1983. Dry deposition of SO2 and NOx in winter.Atmospheric Environment 17:191–192.CrossRefGoogle Scholar
  6. Duyzer, J. H., A. M. H. Bouman, H. S. M. A. Diederen and R. M. van Aalst. 1988. Measurements of dry deposition velocities of NH3 and NH4+ over natural terrains. TNO Division of Technology for Society. TNO report No. R/87/273.Google Scholar
  7. Hicks, B. B., and R. S. Artz. 1992. Estimating background precipitation quality from network data.Environmental Pollution 75:137–143.CrossRefGoogle Scholar
  8. Hicks, B. B. and D. R. Matt. 1988. Combining biology, chemistry, and meteorology in modeling and measuring dry deposition.Journal of Atmospheric Chemistry 6:117–131.CrossRefGoogle Scholar
  9. Hicks, B. B., and R. M. Williams. 1980. Transfer and deposition of particles to water surfaces. Pages 237–244in D. S. Shriner, C. R. Richmond, and S. E. Lindberg,Atmospheric Sulfur Deposition. Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  10. Hicks, B. B., D. D. Baldocchi, R. P. Hosker, Jr., B. A. Hutchison, D. R. Matt, R. T. McMillen, and L. C. Satterfield. 1985. On the use of monitored air concentrations to infer dry deposition (1985). NOAA Tech Memo, ERL ARL-141, 65 pp.Google Scholar
  11. Hicks, B. B., M. L. Wesely, S. E. Lindberg, and S. M. Bromberg (eds.). 1986. Proceedings of the dry deposition workshop of the National Acid Precipitation Assessment Program. 25–27 March 1986. NOAA/ATDD, P.O. Box 2456, Oak Ridge, Tennessee 37831.Google Scholar
  12. Hicks, B. B., R. P. Hosker, and J. D. Womack. 1987. Comparisons of wet and dry deposition derived from the first year of trial dry deposition monitoring. Pages 196–203in R. W. Johnson et al. (eds.),The Chemistry of Acid Rain Sources and Atmospheric Processes. American Chemical Society, Washington, D.C.Google Scholar
  13. Hicks, B. B., R. R. Draxler, D. L. Albritton, F. C. Fehsenfeld, J. M. Hales, T. P. Meyers, R. J. Vong, M. Dodge, S. E. Schwartz, R. L. Tanner, C. I. Davidson, S. E. Lindberg, and M. L. Wesely, with S. C. Liu, T. S. Bates, D. Gillette, H. H. Westberg, B. Lamb, J. Sigmon, and S. Mueller. 1990. Atmospheric processes research and process model development. Paper number 2 of the series of State of Science and Technology Reviews, produced for the National Acid Precipitation Assessment Program as part of the integrated assessment of acid deposition, its causes and its effects.Google Scholar
  14. Hicks, B. B., R. P. Hosker, Jr., T. P. Meyers, and J. D. Womack. 1991. Dry deposition inferential measurement techniques I: Design and tests of a prototype meteorological and chemical system for determining dry deposition.Atmospheric Environment 25A:2345–2359.Google Scholar
  15. Huebert, B. J., and C. H. Robert. 1985. The dry deposition of nitric acid to grass.Journal of Geophysical Research 90:2085–2090.CrossRefGoogle Scholar
  16. Keene, W. C., J. N. Galloway, and J. D. Holden, Jr. 1983. Measurements of weak organic acidity in precipitation from remote areas of the world.Journal of Geophysical Research 88:5122–5130.Google Scholar
  17. Likens, G. E., W. C. Keene, J. M. Miller, and J. N. Galloway. 1987. Chemistry of precipitation from a remote, terrestrial site in Australia.Journal of Geophysical Research 92:13,299–13,314.Google Scholar
  18. Meyers, T. P., B. B. Hicks, R. P. Hosker, Jr., J. D. Womack, and L. C. Satterfield. 1990. Dry deposition inferential measurement techniques II: Seasonal and annual deposition rates of sulfur and nitrate.Atmospheric Environment 25A:2361–2370.Google Scholar
  19. Slinn, W. G. N., L. Hasse, B. B. Hicks, A. W. Hogan, D. Lal, P. S. Liss, K. O. Munnich, G. A. Sehmel, and O. Vittori. 1978. Some aspects of the transfer of atmospheric trace constituents past the air-sea interface.Atmospheric Environment 12:2055–2087.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Bruce Hicks
    • 1
  • Robert McMillen
    • 2
  • Robert S. Turner
    • 3
  • George R. HoldrenJr
    • 4
  • Timothy C. Strickland
    • 4
  1. 1.NOAA Air Resources LaboratorySilver SpringUSA
  2. 2.NOAA/ARL Atmospheric Turbulence and Diffusion DivisionOak RidgeUSA
  3. 3.Oak Ridge National Laboratory, Environmental Sciences DivisionOak RidgeUSA
  4. 4.ManTech Environmental Technology Incorporated c/o US EPA Environmental Research LaboratoryCorvallisUSA

Personalised recommendations