Advertisement

Theoretica chimica acta

, Volume 59, Issue 5, pp 551–553 | Cite as

Electronegativities and the bonding character of molecular orbitals: A remark

  • Alberto Onofre de Amorim
  • Ricardo Ferreira
Short Communication

Abstract

From the density functional theory of Hohenberg-Kohn it is possible to prove that a molecular orbital is bonding (antibonding) if its electronegativity is larger (smaller) than the electronegativities of the corresponding atomic orbitals.

Key words

Electronegativity Bonding MO Antibonding MO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferreira, R., Amorim, A. O.: Theoret. Chim. Acta (Berl.),58, 131 (1981)CrossRefGoogle Scholar
  2. 2.
    Hund, F.: Z. Physik51, 788, 793 (1928)Google Scholar
  3. 3.
    Mulliken, R. S.: Phys. Rev.32, 196 (1928)Google Scholar
  4. 4.
    Herzberg, G.: Z. Physik57, 616 (1929)CrossRefGoogle Scholar
  5. 5.
    Hohenberg, P., Kohn, W.: Phys. Rev.B136, 864 (1964)CrossRefGoogle Scholar
  6. 6.
    Parr, R. G., Donnelly, R. A., Levy, M., Palk Jr., W. E.: J. Chem. Phys.68, 3801 (1978) Parr, R. G., Gadre, S. R., Bartolotti, L. J.: Proc. Nat. Acad. Sci.76, 2522 (1979); Bartolotti, L. J., Gadre, S. R., Parr, R. G.: J. Am. Chem. Soc.102, 2945 (1980)CrossRefGoogle Scholar
  7. 7.
    Iczkowski, R. P., Margrave, J. L.: J. Am. Chem. Soc.83, 3547 (1961)CrossRefGoogle Scholar
  8. 8.
    Gyftopoulos, E. P., Hatsopoulos, G. N.: Proc. Nat. Acad. Sci.60, 786 (1968)Google Scholar
  9. 9.
    March, N. H.: Self-consistent fields in atoms, pp. 44–45. Oxford: Pergamon Press 1975Google Scholar
  10. 10.
    Hellmann, H.: Einführung in die Quantenchemie, p. 285. Leipzig: Deuticke 1937Google Scholar
  11. 11.
    Feynman, R.: Phys. Rev.56, 340 (1939)CrossRefGoogle Scholar
  12. 12.
    Starting with the separate AOs, the energy of each bonding (antibonding) MO lowers (increases) monotonically asR decreases, the MOs transforming into united-atom orbitals. HenceR ·F e < 0 (R ·F e> 0) as an electron moves from an isolated atomic orbital to a bonding (antibonding) MO. For the equilibrium molecular geometry,R e ·F e = 0; this energy minimum atR e is the result of a sum over the bonding and antibonding electrons (plus the internuclear repulsion). We wish to thank the referee for calling our attention to this problem.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Alberto Onofre de Amorim
    • 1
  • Ricardo Ferreira
    • 2
  1. 1.Departamento de FísicaUFPERecife PernambucoBrazil
  2. 2.Centro Brasileiro de Pesquisas FísicasRio de Janeiro, RJBrazil

Personalised recommendations