Advertisement

Environmental Management

, 18:707 | Cite as

Developing inventory and monitoring programs based on multiple objectives

  • Daniel L. Schmoldt
  • David L. Peterson
  • David G. Silsbee
Profile

Abstract

Resource inventory and monitoring (I&M) programs in national parks combine multiple objectives in order to create a plan of action over a finite time horizon. Because all program activities are constrained by time and money, it is critical to plan I&M activities that make the best use of available agency resources. However, multiple objectives complicate a relatively straightforward allocation process. The analytic hierarchy process (AHP) offers a structure for multiobjective decision making so that decision-makers’ preferences can be formally incorporated in seeking potential solutions. Within the AHP, inventory and monitoring program objectives and decision criteria are organized into a hierarchy. Pairwise comparisons among decision elements at any level of the hierarchy provide a ratio scale ranking of those elements. The resulting priority values for all projects are used as each project’s contribution to the value of an overall I&M program. These priorities, along with budget and personnel constraints, are formulated as a zero/one integer programming problem that can be solved to select those projects that produce the best program. An extensive example illustrates how this approach is being applied to I&M projects in national parks in the Pacific Northwest region of the United States. The proposed planning process provides an analytical framework for multicriteria decisionmaking that is rational, consistent, explicit, and defensible.

Key words

Analytic hierarchy process Capital budgeting Integer programming Multiple objective planning National parks Resource allocation 

Literature Cited

  1. Alston, R. M., and D. C. Iverson. 1987. The road from Timber RAM to FORPLAN.Journal of Forestry 85:43–49.Google Scholar
  2. Arbel, A. 1987. Venturing into new technological markets.Mathematical Modeling 9(3–5):299–308.CrossRefGoogle Scholar
  3. Bahmani, N., and H. Blumberg. 1987. Consumer preference and reactive adaptation to a corporate solution of the over-the-counter medication dilemma—an analytic hierarchy process analysis.Mathematical Modeling 9(3–5):293–298.CrossRefGoogle Scholar
  4. Barber, K. H., and S. A. Rodman. 1990. FORPLAN: The marvelous toy.Journal of Forestry 88(5):26–30.Google Scholar
  5. Bare, B. B., and G. Mendoza. 1988. Multiple objective forest land management planning: An illustration.European Journal of Operational Research 34:44–55.CrossRefGoogle Scholar
  6. Cohon, J. L. 1978. Multiobjective programming and planning. Academic Press, New York, 333 pp.Google Scholar
  7. Davis, G. E. 1989. Design of a long-term ecological monitoring program for Channel Islands National Park, California.Natural Areas Journal 9:80–89.Google Scholar
  8. Dougherty, J. J., and T. L. Saaty. 1982. Optimum determination of hospital requirements. Pages 165–181in T. L. Saaty and L. G. Vargas (eds.), The logic of priorities. Kluwer-Nijhoff Publishing, Boston.Google Scholar
  9. Dyer, R. F., and E. H. Forman. 1991. An analytical approach to marketing decisions. Prentice-Hall, New York, 368 pp.Google Scholar
  10. Fechner, G. 1966. Elements of psychophysics, vol. 2 (translated by Helmut E. Adler). Holt, Rinehart, and Winston, New York.Google Scholar
  11. Field, D. B. 1973. Goal programming in forest management.Forest Science 19(2):125–135.Google Scholar
  12. Forman, E. H. 1987. Relative vs absolute worth.Mathematical Modeling 9(3–5):195–202.CrossRefGoogle Scholar
  13. Garton, E. O. 1984. Cost-efficient baseline inventories of research natural areas. Pages 40–45in J. L. Johnson, J. F. Franklin, and R. G. Krebill (coord.), Research natural areas: Baseline monitoring and management symposium proceedings. USDA Forest Service Intermountain Research Station, Ogden, Utah.Google Scholar
  14. Gholomnezhad, A. 1981. Critical choices for OPEC members and the United States.Journal of Conflict Resolution 25(1):115–143.Google Scholar
  15. Halvorson, C. H. 1984. Long-term monitoring of small vertebrates: A review with suggestions. Pages 11–25in J. L. Johnson, J. F. Franklin, and R. G. Krebill (coord.), Research natural areas: Baseline monitoring and management symposium proceedings. USDA Forest Service Intermountain Research Station, Ogden, Utah.Google Scholar
  16. Hinds, W. T. 1984. Towards monitoring of long-term trends in terrestrial ecosystems.Environmental Conservation 11:11–18.CrossRefGoogle Scholar
  17. Hirst, S. M. 1983. Ecological and institutional bases for long-term monitoring of fish and wildlife populations. Pages 175–178in J. F. Bell, and T. Atterbury (eds.), Renewable resource inventories for monitoring changes and trends conference Proceedings College of Forestry, Oregon State University, Corvallis, Oregon.Google Scholar
  18. Hof, J., B. Kent, and T. Baltic. 1992. An iterative multilevel approach to natural resources optimization: a test case.Natural Resources Modeling 6:1–22.Google Scholar
  19. Hoffman, R. A. 1988. Craters of the Moon National Monument baseline inventory and monitoring (wildlife). Report B-88-4. University of Idaho Cooperative Park Studies Unit, Moscow, Idaho.Google Scholar
  20. Johnson, K. N. 1986. FORPLAN version 1: An overview. Land Management Planning System Section, USDA Forest Service, Fort Collins, Colorado.Google Scholar
  21. Johnson, K. N., and D. B. Jones. 1979. A user’s guide to multiple use-sustained yield resource scheduling calculation (MUSYC). Land Management Planning System Section, USDA Forest Service, Fort Collins, Colorado.Google Scholar
  22. Johnson, K. N., T. W. Stuart, and S. A. Crim. 1986. FORPLAN version 2—An overview. Land Management Planning System Section, USDA Forest Service, Fort Collins, Colorado.Google Scholar
  23. Johnson, W. C., and S. P. Bratton. 1978. Biological monitoring in UNESCO biosphere reserves with special reference to the Great Smoky Mountains National Park.Biological Conservation 13:105–115.CrossRefGoogle Scholar
  24. Jones, B. K. 1986. The inventory and monitoring process. Pages 1–9in A. Y. Cooperrider, R. J. Boyd, and H. R. Stewart (eds.), Inventory and Monitoring of Wildlife Habitat. Bureau of Land Management, Denver, Colorado.Google Scholar
  25. Knight, H. A. 1987. The pine decline.Journal of Forestry 85:25–28.Google Scholar
  26. Likens, G. E., F. H. Bormann, R. S. Pierce, and others. 1977. Biogeochemistry of a forested ecosystem. Springer-Verlag, New York, 146 pp.Google Scholar
  27. MacDonald, L. H., A. W. Smart, and R. C. Wissmar. 1991. Monitoring guidelines to evaluate effects of forestry activities on streams in the Pacific Northwest and Alaska. Publication EPA/910/9-91-001. Region 10, US Environmental Protection Agency, Seattle, Washington.Google Scholar
  28. McKee, A. 1984. Integrating academic and agency research interests at the H. J. Andrews Experimental Forest. Pages 54–58in J. L. Johnson, J. F. Franklin, and R. G. Krebill (coord.), Research Natural Areas: Baseline Monitoring and Management Symposium Proceedings. USDA Forest Service Intermountain Research Station, Ogden, Utah.Google Scholar
  29. Mendoza, G. A., and W. Sprouse. 1989. Forest planning and decision making under fuzzy environments: An overview and illustration.Forest Science 35(2):481–502.Google Scholar
  30. Messer, J., R. A. Linthurst, and C. Riordan. 1989. A national program for environmental monitoring. Pages 211–215in R. D. Nobel, J. L. Martin, and K. S. Jensen (eds.), Air pollution effects on vegetation, including forest ecosystems, proceedings of the second US/USSR symposium. USDA Forest Service Northeastern Research Station, Radnor, Pennsylvania.Google Scholar
  31. Miller, G. A. 1956. The magical number seven plus or minus two: Some limits on our capacity for processing information.Psychological Review 63:81–97.Google Scholar
  32. NADP/NTN. 1989. National Atmospheric Deposition Program/National Trends Network annual data summary: Precipitation chemistry in the United States. National Atmospheric Deposition Program, Colorado State University, Fort Collins, Colorado.Google Scholar
  33. National Park Service. 1992. Natural resources inventory and monitoring guideline. Publication NPS-75. National Park Service, Denver, Colorado.Google Scholar
  34. Navon, D. I. 1971. Timber RAM ... a long-range planning method for commercial timber lands under multiple-use management. USDA Forest Service Research Paper PSW-70.Google Scholar
  35. Peterson, D. L., D. G. Silsbee, and D. L. Schmoldt. 1994. Developing inventory and monitoring programs in national parks: A planning approach. National Park Service, Washington DC, Natural Resources Report (in press).Google Scholar
  36. Peterson, D. L., D. L. Schmoldt, and D. G. Silsbee. 1994. A case study of resource management planning with multiple objectives and projects.Environmental Management 18(5):729–742.Google Scholar
  37. Radloff, D., R. Loomis, J. Barnard, and R. Birdsey. 1991. Forest health monitoring: Taking the pulse of Americas forests. Pages 41–47in Agriculture and the environment: The 1991 yearbook of agriculture. US Department of Agriculture, Washington, DC.Google Scholar
  38. Ramanujam, V., and T. L. Saaty. 1981. Technological choice in less developed countries.Technology Forecasting and Social Change 19:81–98.CrossRefGoogle Scholar
  39. Saaty, T. L. 1977. The Sudan transport study.Interfaces 8:37–57.Google Scholar
  40. Saaty, T. L. 1980. The analytic hierarchy process. McGraw-Hill, New York, 287 pp.Google Scholar
  41. Saaty, T. L. 1986. Exploring optimization through hierarchies and ratio scales.Socio-Economic Planning Science 20(6):355–360.CrossRefGoogle Scholar
  42. Saaty, T. L. 1987. The analytic hierarchy process—what it is and how it is used.Mathematical Modeling 9(3–5):161–176.CrossRefGoogle Scholar
  43. Saaty, T. L. 1990a. Decision making for leaders. RWS Publications, Pittsburgh, Pennsylvania, 292 pp.Google Scholar
  44. Saaty, T. L. 1990b. Multicriteria decision making: The analytic hierarchy process. RWS Publications, Pittsburgh, Pennsylvania, 285 pp.Google Scholar
  45. Saaty, T. L., and K. P. Kearns. 1985. Analytical planning. Pergamon Press, Oxford, 208 pp.Google Scholar
  46. Saaty, T. L., and R. S. Mariano. 1979. Rationing energy to industries.Energy Systems and Policy 3(1):85–111.Google Scholar
  47. Saaty, T. L., and L. G. Vargas. 1982. The logic of priorities. Kluwer-Nijhoff Publishing, Boston, 299 pp.Google Scholar
  48. Silsbee, D. G., and D. L. Peterson. 1991. Designing and implementing comprehensive long-term inventory and monitoring programs for National Park System lands. Natural Resources Report NRR-91/04. National Park Service, Denver, Colorado.Google Scholar
  49. Silsbee, D. G., and D. L. Peterson. 1993. Planning for implementation of long-term resource monitoring programs.Environmental Monitoring and Assessment 26:177–185.CrossRefGoogle Scholar
  50. Steur, R. E., and A. T. Schuler. 1978. An interactive multiple objective linear programming approach to a problem in forest management.Operations Research 26(2):254–269.Google Scholar
  51. Vargas, G. L. 1982. Reciprocal matrices with random coefficients.Mathematical Modeling 3(1):69–81.CrossRefGoogle Scholar
  52. Zahedi, F. 1986. The analytic hierarchy process—a survey of the method and its applications.Interfaces 16:96–108.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • Daniel L. Schmoldt
    • 1
  • David L. Peterson
    • 2
  • David G. Silsbee
    • 2
  1. 1.USDA Forest Service Southeastern Forest Experiment StationBrooks Forest Products Center Virginia TechBlacksburgUSA
  2. 2.National Biological Survey Cooperative Park Studies UnitUniversity of Washington, AR-10SeattleUSA

Personalised recommendations