Hyperfine Interactions

, Volume 35, Issue 1–4, pp 691–695 | Cite as

The study of stress induced effects on Mössbauer impurities forming the kink in dislocation in some crystals

  • Debadideb Bhattacharya
  • A. S. Ghosh
Defects and Radiation Damage Defects in Metals and Alloys


The alternating external stress value required to move a dislocation together with Mössbauer impurities positioned at dislocation is calculated by using the kink model. The kinetic energy of the dislocation is calculated which leads to an energy shift in the γ-ray photon emitted by the atom moving with the dislocation. The critical stress values calculated at low temperatures are found to change with the mass and the Debye temperatures of the resonating atoms. The variation of mean square displacement, mean square velocity and the first moments for the Mössbauer impurity at low temperature are also evaluated. All the results are compared with the corresponding values obtained by using the string model.


Thin Film Kinetic Energy Critical Stress Induce Effect External Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    J. P. Hirth and J. Lothe, Theory of Dislocation (McGraw Hill, New York, 1968).Google Scholar
  2. /2/.
    D. Bhattacharya Phys. Status Solidi 76 (1976) K81.Google Scholar
  3. /3/.
    D. Bhattacharya, S. K. Roy and D. L. Bhattacharya, Proc. Nucl. Phys. Solid State Phys. Symp. 1978 C21, 443.Google Scholar
  4. /4/.
    S. K. Roy and N. Kundu, Pramana 25 (1985) 319.CrossRefADSGoogle Scholar
  5. /5/.
    W. P. Mason, Physical Accoustics, Ed. W. P. Mason and R. N. Thurston Vol. VIII (Academic Press, New York, 1971).Google Scholar
  6. /6/.
    J. S. Koehler, Imperfection in nearly perfect crystal, Ed. W. Schockly et al. (John Wiley, New York, 1952).Google Scholar
  7. /7/.
    A. V. Granato and K. Lücke, J. Appl. Phys. 27 (1956) 583.CrossRefMATHADSGoogle Scholar
  8. /8/.
    W. Atkinson and N. Cabrera, Phys. Rev. A138 (1965) 763.ADSGoogle Scholar
  9. /9/.
    A. M. Kosevich, Dislocation in Solids, Ed. F. R. N. Nabarro, Vol. 1 (North-Holland, Amsterdam, 1979).Google Scholar
  10. /10/.
    N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy (Chapman and Hall, London, 1971).Google Scholar
  11. /11/.
    V. I. Goldanskii and E. F. Makarov, Chemical Application of Mössbauer Spectroscopy, Ed. V. I. Goldanskii and R. H. Herber (Academic Press, New York, 1968).Google Scholar
  12. /12/.
    R. M. Housley and F. Hess, Phys. Rev. 146 (1966) 517.CrossRefADSGoogle Scholar
  13. /13/.
    J. M. Grow, D. G. Howard, R. H. Nussbaum and M. Takeo, Phys. Rev. B17 (1978) 15.CrossRefADSGoogle Scholar
  14. /14/.
    M. Suenaga and J. M. Galligan, Physical Acoustics, Ed. W. P. Mason and R. N. Thurston, Vol. IX. (Academic Press, New York, 1972).Google Scholar
  15. /15/.
    W. P. Mason, Physical Acoustics, Ed. W. P. Mason, Vol. IVA (Academic Press, New York, 1966).Google Scholar
  16. /16/.
    R. Truell, C. Elbaum and B. B. Chick, Ultrasonic methods in solid state physics, (Academic Press, New York, 1969).Google Scholar
  17. /17/.
    C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, 1983).Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1987

Authors and Affiliations

  • Debadideb Bhattacharya
    • 1
  • A. S. Ghosh
    • 2
  1. 1.R.N.S. CollegeWest BengalIndia
  2. 2.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceJadavpur, CalcuttaIndia

Personalised recommendations