Hyperfine Interactions

, Volume 30, Issue 4, pp 309–335 | Cite as

Comments on57Fe Mössbauer spectra for Kramers doublets: A phenomenological interpretation

  • M. Valentine


A static effective spinS=1/2 Hamiltonian is usually specified by a phenomenonological parameter, set, but the typical choice of parameters could be inappropriate. Two main issues are addressed: (i) Which spin Hamiltonian parameters are observable at a given applied field strength, and (ii) how should one deal with skewsymmetric components of the electronic Zeeman and magnetic hyperfine tensors that can be present for spin-coupled multinuclear complexes. Certain Mössbauer experiments were selected, somewhat arbitrarily, as examples; this analysis can be applied to other spectroscopic techniques as well.


Thin Film Field Strength Applied Field Main Issue Spectroscopic Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Abragam and B. Bleaney,Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, 1970).Google Scholar
  2. [2]
    R. Cooke, J.C.M. Tsibris, P.G. Debrunner, R. Tsai, I.C. Gunsalus and H. Frauenfelder, Proc. Natl. Acad. Sci. USA 59(1968)1045.ADSGoogle Scholar
  3. [3]
    M. Valentine, Ph.D. thesis, University of Illinois, unpublished (1983).Google Scholar
  4. [4]
    M.H.L. Prycè, Proc. Roy. Phys. Soc. (London) A63(1950)25.CrossRefADSMATHGoogle Scholar
  5. [5]
    A. Abragam and M.H.L. Pryce, Proc. Roy. Phys. Soc. A205(1951)135.ADSGoogle Scholar
  6. [6]
    F.S. Ham, J. Phys. Chem. Solids 24(1963)1165.CrossRefMATHGoogle Scholar
  7. [7]
    W.A. Eaton, G. Palmer, J.A. Fee, T. Kimura and W. Lovenberg, Proc. Natl. Acad. Sci. USA 68(1971)3015.ADSGoogle Scholar
  8. [8]
    T. Moriya, Phys. Rev. 120(1960)91.CrossRefADSGoogle Scholar
  9. [9]
    C.E. Johnson, E. Elstner, J.F. Gibson, G. Benfield, M.C.W. Evans and D.O. Hall, Nature 220(1968)1291.Google Scholar
  10. [10]
    G. Lang, Phys. Lett. 26A(1968)223.ADSGoogle Scholar
  11. [11]
    W.T. Oosterhuis and G. Lang, Phys. Rev. 178(1969)439.CrossRefADSGoogle Scholar
  12. [12]
    Iron-Sulfur Proteins, ed. T.G. Spiro (Wiley, New York, 1982).Google Scholar
  13. [13]
    D.M. Kurtz, Jr., J.T. Sage, M. Hendrich, P.G. Debrunner and G.S. Lukat, J. Biol. Chem. 258(1983)2115.Google Scholar
  14. [14]
    P.G. Debrunner, M.P. Hendrich, J. de Jersey, D.T. Keough, J.T. Sage and B. Zerner, Biochim. Biophys. Acta 745(1983)103.Google Scholar
  15. [15]
    W. Greub,Linear Algebra, 4th ed. (Springer, 1981).Google Scholar
  16. [16]
    J.F. Gibson, D.O. Hall, J.H.M. Thornley and F.R. Whatley, Proc. Natl. Acad. Sci. USA 56 (1966)987.ADSGoogle Scholar
  17. [17]
    W.E. Blumberg and J. Peisach, Arch. Biochem. Biophys. 162(1974)502.CrossRefGoogle Scholar
  18. [18]
    P. Bertrand and J.-P. Gayda, Biochim. Biophys. Acta 579(1979)107.Google Scholar
  19. [19]
    P.G. Debrunner, E. Münck, L. Que and C.E. Schulz, in:Iron Sulfur Proteins III, ed. W. Lovenberg (Academic Press, 1977).Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1986

Authors and Affiliations

  • M. Valentine
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations