Hyperfine Interactions

, Volume 33, Issue 1–4, pp 69–88 | Cite as

High resolution Mössbauer spectroscopy with67Zn in metallic systems

  • Th. Obenhuber
  • W. Adlassnig
  • J. Zänkert
  • U. Närger
  • W. Potzel
  • G. M. Kalvius
Solid State Physic and Chemistry

Abstract

The high energy resolution of the 93.3 keV Mössbauer transition in67Zn is used to investigate changes of s-electron density at the Zn nucleus in Cu-Zn alloys with special emphasis on the α-phase and on Zn-metal itself. We observe the presence of short-range order in α-brass with only four different Cu-Zn configurations, instead of the expected binomial distribution. In Zn metal, no change of center shift was observed when crossing the superconducting phase transition. The tremendous anisotropy of the Lamb-Mössbauer factor, as well as the temperature shift found for hexagonal Zn metal, demonstrate that the 93.3 keV resonance is also extremely sensitive to lattice dynamical effects. Our results, as well as specific heat data, are quantitatively described by an extended Debye model characterized by two Debye temperatures, θ and θ, which correspond to the lattice vibrations perpendicular and parallel to thec axis, respectively.

Keywords

Temperature Shift Debye Temperature Lattice Vibration Metallic System Debye Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. Heine and D. Weaire,Solid State Physics, Vol. 24 (Academic Press, New York, 1970). p. 249.Google Scholar
  2. [2]
    J. Hafner and V. Heine, J. Phys. F13(1983)2479.CrossRefADSGoogle Scholar
  3. [3]
    A. Bansil, H. Ehrenreich, L. Schwartz and R.E. Watson, Phys. Rev. B9(1974)445.CrossRefADSGoogle Scholar
  4. [4]
    R. Zeller and P.H. Dederichs, Phys. Rev. Lett. 42(1979)1713.CrossRefADSGoogle Scholar
  5. [5]
    R. Prasad, S.C. Papadopoulos and A. Bansil, Phys. Rev. B23(1981)2607.CrossRefADSGoogle Scholar
  6. [6]
    R. Prasad and A. Bansil, Phys. Rev. Lett. 48(1982)113.CrossRefADSGoogle Scholar
  7. [7]
    M. Hansen and K. Anderko,Constitution of Binary Alloys (McGraw-Hill, New York, 1958) p. 650; and R.P. Elliott,Constitution of Binary Alloys, First Suppl. (McGraw-Hill, New York, 1965) p. 390; and C.J. Smithells,Metals Reference Book, Vol. II, 4th ed. (Butterworths, London, 1967).Google Scholar
  8. [8]
    W. Hume-Rothery, J. Instr. Meth. 35(1926)307.Google Scholar
  9. [9]
    I. Dézsi, A. Balogh, J. Balogh, Zs. Kajcsos, D.L. Nagy and E. Zsoldos, J. Phys. F9(1979)999.CrossRefADSGoogle Scholar
  10. [10]
    C. Kittel,Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976) p. 24.Google Scholar
  11. [11]
    M.D. Thompson, P.C. Pattnaik and T.P. Das, Phys. Rev. B18(1978)5402, and references therein.CrossRefADSGoogle Scholar
  12. [12]
    W.T. Vetterling and D. Candela, Phys. Rev. B27(1983)5394.CrossRefADSGoogle Scholar
  13. [13]
    W. Potzel, U. Närger, Th. Obenhuber, J. Zänkert, W. Adlassnig and G.M. Kalvius, Phys. Lett. 98A(1983)295.ADSGoogle Scholar
  14. [14]
    W. Potzel, W. Adlassnig, U. Närger, Th. Obenhuber, K. Riski and G.M. Kalvius, Phys. Rev. B30(1984)4980.CrossRefADSGoogle Scholar
  15. [15]
    W. Potzel, Th. Obenhuber, A. Forster and G.M. Kalvius, Hyp. Int. 12(1982)135.CrossRefGoogle Scholar
  16. [16]
    A. Forster, W. Potzel and G.M. Kalvius, Z. Phys. B37(1980)209.CrossRefGoogle Scholar
  17. [17]
    W. Potzel, A. Forster and G.M. Kalvius, Phys. Lett. 67A(1978)421.ADSGoogle Scholar
  18. [18]
    U. Närger, J. Zänkert, W. Potzel, Th. Obenhuber, A. Forster and G.M. Kalvius, Hyp. Int. 15/16(1983)777.CrossRefGoogle Scholar
  19. [19]
    W. Potzel and N. Halder, Nucl. Instr. Meth. 226(1984)418.CrossRefADSGoogle Scholar
  20. [20]
    W. Potzel,Proc. of XX Winter School on Physics, Zakopane, Poland (1985) p. 294.Google Scholar
  21. [21]
    G. Shinoda and Y. Amano, Trans. Japan Instr. Metals 1(1960)54.Google Scholar
  22. [22]
    Th. Obenhuber, W. Adlassnig, J. Zänkert, U. Närger, W. Potzel and G.M. Kalvius,ICAME 1985, Hyp. Int. 27–29(1986)1033.Google Scholar
  23. [23]
    G.K. Wertheim, M. Campagna and S. Hüfner, Phys. Cond. Matter 18(1974)133.CrossRefGoogle Scholar
  24. [24]
    E.O. Wollan and G.G. Harvey, Phys. Rev. 51(1937)1054.CrossRefADSGoogle Scholar
  25. [25]
    G.E.M. Jauncey and W.A. Bruce, Phys. Rev. 51(1937)1067.CrossRefADSGoogle Scholar
  26. [26]
    R.E. DeWames, T. Wolfram and G.W. Lehman, Phys. Rev. A138(1965)717.CrossRefADSGoogle Scholar
  27. [27]
    L.J. Raubenheimer and G. Gilat, Phys. Rev. 157(1967)586.CrossRefADSGoogle Scholar
  28. [28]
    D.L. Martin, Phys. Rev. 167(1968)640.CrossRefADSGoogle Scholar
  29. [29]
    W. Eichenauer and M. Schulze, Z. Naturforsch. 14a(1959)28.Google Scholar
  30. [30]
    Th. Obenhuber, A. Forster, W. Potzel and G.M. Kalvius, Nucl. Instr. Meth. 214(1983) 361.CrossRefGoogle Scholar
  31. [31]
    Th. Obenhunber, W. Adlassnig, W. Potzel and G.M. Kalvius, to be published.Google Scholar
  32. [32]
    T.H.K. Barron and R.W. Munn, Acta Cryst. 22(1967)170.CrossRefGoogle Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1986

Authors and Affiliations

  • Th. Obenhuber
    • 1
  • W. Adlassnig
    • 1
  • J. Zänkert
    • 1
  • U. Närger
    • 1
  • W. Potzel
    • 1
  • G. M. Kalvius
    • 1
  1. 1.Physik-Department E15Technische Universität MünchenGarchingGermany

Personalised recommendations