Environmental Management

, Volume 14, Issue 1, pp 95–105 | Cite as

Formulation of cleanup standards for trace elements with probability plots

  • Henry L. Fleischhauer
  • Nic Korte


Probability plots of trace element concentrations may be used to partition, or segregate, sample data into its constituent populations. Two populations are typically present in data from sites requiring remedial action, one representing clean, uncontaminated soil or sediment (background) and the other representing contaminated ground. The use of such plots in the analysis and evaluation of environmental data permits a statistical characterization of the background populations, from which defensible cleanup criteria may be developed. These criteria will be environmentally conservative, yet will minimize the amount of soil removed in a remedial action. An example is given from a successful cleanup of a surface impoundment.

Key words

Trace elements Background Contamination Statistics Cleanup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Beus, A. A., and S. V. Grigorian. 1977. Geochemical Exploration methods for mineral deposits. Applied Publishing, Wilmette, Illinois.Google Scholar
  2. Cohen, A. C., Jr. 1959. Simplified estimators for the normal distribution when samples are singly censored or truncated.Technometrics 1:217–237.CrossRefGoogle Scholar
  3. Cohen, A. C., Jr. 1961. Tables for maximum likelihood estimates: Singly truncated and singly censored samples.Technometrics 3:535–541.CrossRefGoogle Scholar
  4. Connor, J. J., and H. T. Shacklette. 1975. Background geochemistry of some rocks, soils, plants, and vegetables in the conterminous United States: US Geological Survey, Professional Paper 574-F. US Government Printing Office, Washington, DC.Google Scholar
  5. Dixon, W. J., and F. J. Massey, Jr. 1969. Introduction to statistical analysis, Section 4-K, 3rd ed. Springer-Verlag, New York.Google Scholar
  6. Hormann, P. K. 1969. Beryllium, sections B-O.In K. H. Wedepohl (ed), Handbook of geochemistry, Section 4-K. Springer-Verlag, New York.Google Scholar
  7. Lepeltier, C. A. 1969. Simplified statistical treatment of geochemical data by graphical representation.Economic Geology 64:538–550.CrossRefGoogle Scholar
  8. Rose, A. W., H. E. Hawkes, and J. S. Webb. 1979. Geochemistry in mineral exploration, 2nd ed. Academic Press, New York.Google Scholar
  9. Shacklette, H. T., J. C. Hamilton, J. G. Boerngen, and J. M. Bowles. 1971. Elemental composition of surficial materials in the conterminous United States. U.S. Geological Survey, Professional Paper 574-D. US Government Printing Office, Washington, DC.Google Scholar
  10. Sinclair, A. J. 1976. Applications of probability graphs in mineral exploration, special volume 4. Association of exploration geochemists. Richmond Printers, Richmond, British Columbia, Canada.Google Scholar
  11. Tennant, C. B., and M. L. White. 1959. Study of the distribution of some geochemical data.Economic Geology 54:1281–1290.Google Scholar
  12. Turekian, K. K., and K. H. Wedepohl. 1961. Distribution of the elements in some major units of the earth's crust.Geological Society of America Bulletin 72:175–192.Google Scholar
  13. US Environmental Protection Agency. 1986. Superfund public health evaluation manual. EPA/540/1-861060.Google Scholar
  14. Wakita, H., and R. A. Schmitt. 1970. Cadmium, sections B-O.In K. H. Wedepohl (ed.), Handbook of geochemistry, sections 48-G, 48-K. Springer-Verlag, New York.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Henry L. Fleischhauer
    • 1
  • Nic Korte
    • 2
  1. 1.UNC GeotechGrand JunctionUSA
  2. 2.Oak Ridge National LaboratoryGrand JunctionUSA

Personalised recommendations