Skip to main content
Log in

Projecting future concentrations of atmospheric CO2 with global carbon cycle models: The importance of simulating historical changes

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Projections of future atmospheric CO2 concentrations using global carbon cycle models and assumed time series of future anthropogenic CO2 emissions are only useful if simulations agree reasonably well with the observed history of past changes in atmospheric CO2. In this article we compare simulations from a set of eight global carbon cycle models with observations of atmospheric CO2 from the Siple Station, Antarctica, ice core and the monitoring station at Mauna Loa Observatory, Hawaii, USA. Our comparisons reinforce previous assessments that early estimates of biospheric CO2 emissions derived by reconstruction of historical land-use change are incompatible with the understanding of atmosphere-ocean CO2 exchange codified in conventional carbon cycle models and the observed history of changes in atmospheric CO2. More recent estimates of the history of CO2 emissions associated with land-use change do not significantly resolve this incompatibility. Terrestrial biospheric emissions estimated by deconvolution of atmospheric CO2 observations provide reasonable correspondence between simulation and observation, but the deconvolution estimates differ dramatically from the estimates by land-use reconstruction. Resolution of this difference is a challenge for modelers of the global terrestrial biosphere. In the interim, caution is required in interpreting atmospheric CO2 projections from models that have not yet resolved the basic inconsistencies among emission estimates, models of oceanic uptake, and observations of atmospheric CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bacastow, R., and A. Björkström. 1981. Comparison of ocean models for the carbon cycle. Pages 29–79in B. Bolin (ed.), Carbon cycle modelling. SCOPE 16. John Wiley & Sons, New York.

    Google Scholar 

  • Bacastow, R. B., and C. D. Keeling. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from AD 1700 to 2070 as deduced from a geochemical model. Pages 86–134in G. Woodwell and E. V. Peca (eds.), Carbon and the biosphere (CONF-720510). USAEC, Washington, DC.

    Google Scholar 

  • Bacastow, R. B., and C. D. Keeling. 1979. Models to predict future atmospheric CO2 concentrations. Pages 79–90in W. P. Elliot and L. Machta (eds.), Global effects of carbon dioxide from fossil fuels. CONF-770385. US Department of Energy, Washington, DC.

    Google Scholar 

  • Bacastow, R. B., C. D. Keeling, and T. P. Whorf. 1985. Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982.Journal of Geophysical Research 90(D6):10,529–10,540.

    Google Scholar 

  • Barnola, J. M., D. Raynaud, A. Neftel, and H. Oeschger. 1983. Comparison of CO2 measurements by two laboratories on air from bubbles in polar ice.Nature 303:410–412.

    Article  CAS  Google Scholar 

  • Barnola, J. M., D. Raynaud, Y. S. Korotkevich, and C. Lorius. 1987. Vostok ice core provides 160,000-year record of atmospheric CO2.Nature 329:408–414.

    Article  CAS  Google Scholar 

  • Björkström, A. 1979. A model of CO2 interaction between the atmosphere, oceans and land biota. Pages 403–457in B. Bolin, E. T. Degens, S. Kempe, and P. Ketner (eds.), The global carbon cycle. SCOPE 13. John Wiley & Sons, New York.

    Google Scholar 

  • Björkström, A. 1986. One-dimensional and two-dimensional ocean models for predicting the distribution of CO2 between the ocean and the atmosphere. Pages 258–278in J. R. Trabalka and D. E. Reichle (eds.), The changing carbon cycle: A global analysis. Springer-Verlag, New York.

    Google Scholar 

  • Bolin, B. 1986. How much CO2 will remain in the atmosphere: The carbon cycle and projections for the future. Pages 93–155in B. Bolin, B. R. Döös, J. Jäger, and R. A. Warrick (eds.), The greenhouse effect, climatic change, and ecosystems. John Wiley & Sons, New York.

    Google Scholar 

  • Bolin, B., A. Björkström, C. D. Keeling, R. Bacastow, and U. Siegenthaler. 1981. Carbon cycle modelling. Pages 1–28in B. Bolin (ed.), Carbon cycle modelling. SCOPE 16. John Wiley & Sons, New York.

    Google Scholar 

  • Bolin, B., A. Björkström, K. Holmen, and B. Moore. 1983. The simultaneous use of tracers for ocean circulation studies.Tellus 35B:206–236.

    CAS  Google Scholar 

  • Broecker, W. S., T.-H. Peng, and R. Engh. 1980. Modelling the carbon system.Radiocarbon 22:565–598.

    CAS  Google Scholar 

  • Broecker, W. S., T.-H. Peng, G. Ostlund, and M. Stuiver. 1985. The distribution of bomb radiocarbon in the ocean.Journal of Geophysical Research 90:6953–6970.

    CAS  Google Scholar 

  • Dahlman, R. C. 1985. Modeling needs for predicting responses sponses to CO2 enrichment: Plants, communities, and ecosystems.Ecological Modelling 29:77–106.

    Article  Google Scholar 

  • Dale, V. H., R. A. Houghton, and C. A. S. Hall. 1991. Estimating the effects of land use change on global atmospheric CO2 concentrations.Canadian Journal of Forest Research 21:87–90.

    CAS  Google Scholar 

  • Detwiler, R. P., and C. A. A. Hall. 1988. Tropical forests and the global carbon cycle.Science 239:42–47.

    Google Scholar 

  • DOE Multi-Laboratory Climate Change Committee. 1990. Energy and climate change. Report of the DOE Multi-Laboratory Climate Change Committee. Lewis Publishers, Chelsea, Michigan, 160 pp.

    Google Scholar 

  • Edmonds, J. A., J. M. Reilly, J. R. Trabalka, and D. E. Reichle. 1984. An analysis of possible future atmospheric retention of fossil fuel CO2. TR013, DOE/OR/21400-1. US Department of Energy, Washington, DC, 160 pp.

    Google Scholar 

  • Edmonds, J. A., J. M. Reilly, R. H. Gardner, and A. Brenkert. 1986. Uncertainty in future global energy use and fossil fuel CO2 emissions 1975 to 2075. TR036, DOE/NBB-0081. US Department of Energy, Washington, DC, 95 pp.

    Google Scholar 

  • Emanuel, W. R., G. G. Killough, W. M. Post, and H. H. Shugart. 1984a. Modeling terrestrial ecosystems in the global carbon cycle with shifts in carbon storage capacity by land-use change.Ecology 65:970–983.

    Article  CAS  Google Scholar 

  • Emanuel, W. R., G. G. Killough, W. M. Post, H. H. Shugart, and M. P. Stevenson. 1984b. Computer implementation of a globally averaged model of the world carbon cycle. DOE/NBB-0062, TR010. US Department of Energy, Washington, DC National Technical Information Service, Springfield, Virginia.

    Google Scholar 

  • Emanuel, W. R., I. Y.-S. Fung, G. G. Killough, B. Moore, and T.-H. Peng. 1985. Modeling the global carbon cycle and changes in the atmospheric carbon dioxide levels. Pages 141–173in J. R. Trabalka (ed.), Atmospheric carbon dioxide and the global carbon cycle. DOE/ER-0239. US Department of Energy, Washington, DC.

    Google Scholar 

  • Enting, I. G., and J. V. Mansbridge. 1987. The incompatibility of ice-core CO2 data with reconstructions of biotic CO2 sources.Tellus 39B:318–325.

    CAS  Google Scholar 

  • Enting, I. G., and G. I. Pearman. 1986. The use of observations in calibrating and validating carbon cycle models. Pages 425–458in J. Trabalka and D. Reichle (eds.), The changing carbon cycle: A global analysis, Springer-Verlag, New York.

    Google Scholar 

  • Esser, G. 1987. Sensitivity of global carbon pools and fluxes to human and potential climatic impacts.Tellus 39B:245–260.

    CAS  Google Scholar 

  • Friedli, H., H. Lötscher, H. Oeschger, U. Siegenthaler, and B. Stauffer. 1986. Ice core record of the13C/12C ratio of atmospheric CO2 in the past two centuries.Nature 324:237–238.

    Article  CAS  Google Scholar 

  • Freyer, H. D. 1986. Interpretation of the Northern Hemispheric record of the13C/12C trends of atmospheric CO2 in tree rings. Pages 126–150in J. R. Trabalka and D. E. Reichle (eds.), The changing carbon cycle: A global analysis. Springer-Verlag, New York.

    Google Scholar 

  • Gammon, R. H., W. D. Komhyr, and J. T. Peterson. 1986. The global atmospheric CO2 distribution 1968–1983: Interpretation of the results of the NOAA/GMCC measurement program. Pages 1–15in J. Trabalka and D. Reichle (eds.), The changing carbon cycle: A global analysis. Springer-Verlag, New York.

    Google Scholar 

  • Goudriaan, J., and G. L. Ajtay. 1979. The possible effects of increased CO2 on photosynthesis. Pages 237–249in B. Bolin, E. T. Degens, S. Kempe, and P. Ketner (eds.), The global carbon cycle. SCOPE 13. John Wiley & Sons, New York.

    Google Scholar 

  • Goudriaan, J., and P. Ketner. 1984. A simulation study for the global carbon cycle, including man's impact on the biosphere.Climatic Change 6:167–192.

    Article  CAS  Google Scholar 

  • Harvey, L. D. D. 1989. Managing atmospheric CO2.Climatic Change 15:339–341.

    Google Scholar 

  • Houghton, R. A. 1986. Estimating changes in the carbon content of terrestrial ecosystems from historical data. Pages 175–193in J. R. Trabalka and D. E. Reichle (eds.), The changing carbon cycle: A global analysis, Springer-Verlag, New York.

    Google Scholar 

  • Houghton, R. A. 1990. The global effects of tropical deforestation.Environmental Science and Technology 24:414–422.

    Article  CAS  Google Scholar 

  • Houghton, R. A., and G. M. Woodwell. 1989. Global climatic change.Scientific American 260:36–44.

    CAS  Google Scholar 

  • Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere.Ecological Monographs 53:235–262.

    Article  CAS  Google Scholar 

  • Houghton, R. A., R. D. Boone, J. M. Melillo, C. A. Palm, G. M. Woodwell, N. Meyers, B. Moore, III, and D. L. Skole. 1985. Net flux of carbon dioxide from tropical forests in 1980.Nature 316:617–620.

    Article  CAS  Google Scholar 

  • Jones, P. D., T. M. L. Wigley, C. K. Folland, D. E. Parker, J. K. Angell, S. Lebedeff, and J. E. Hansen. 1988. Evidence for global warming in the past decade.Nature 332:790.

    Article  Google Scholar 

  • Keeling, C. D. 1973a. Industrial production of carbon dioxide from fossil fuels and limestone.Tellus 25:174–198.

    CAS  Google Scholar 

  • Keeling, C. D. 1973b. The carbon dioxide cycle: reservoir models to depict the exchange of atmospheric carbon dioxide with the occans and land plants. Pages 251–329in S. I. Rasool (ed.), Chemistry of the lower atmosphere. Plenum Press, New York.

    Google Scholar 

  • Keeling, C. D. 1986. Atmospheric CO2 concentrations—Mauna Loa Observatory, Hawaii 1958–1986. NDP-001/R1. Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Keeling, C. D., and R. B. Bacastow. 1977. Impact of industrial gases on climate. Pages 110–160in Energy and Climate. Report of the panel on energy and climate, R. Revelle, chairman. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. Pages 165–236in D. H. Peterson (ed.), Aspects of climate variability in the Pacific and the western Americas. Geophysical monograph 55. American Geophysical Union, Washington, DC.

    Google Scholar 

  • Killough, G. G., and W. R. Emanuel. 1981. A comparison of several models of carbon turnover in the ocean with respect to their distributions of transit time and age, and responses to atmospheric CO2 and14C.Tellus 33:274–290.

    CAS  Google Scholar 

  • Kohlmaier, G. H., H. Bröhl, E. O. Siré and M. Plöchl. 1987. Modelling stimulation of plants and ecosystem response to present levels of excess atmospheric CO2.Tellus 39B:155–170.

    CAS  Google Scholar 

  • Kratz, G. 1985. Modelling the global carbon cycle. Pages 29–81in O. Hutzinger (ed.), The handbook of environmental chemistry, Vol. 1, Part D, The natural environment and the biogeochemical cycles. Springer-Verlag, Berlin.

    Google Scholar 

  • Luther, F. M., and R. G. Ellingson. 1985. Carbon dioxide and the radiation budget. Pages 25–55in M. C. MacCracken and F. M. Luther (eds.), Projecting the climatic effects of increasing carbon dioxide. DOE/ER-0237. US Department of Energy, Washington, DC, 381 pp.

    Google Scholar 

  • Maier-Reimer, E., and K. Hasselmann. 1987. Transport and storage of CO2 in the ocean—an inorganic ocean-circulation carbon cycle model.Climate Dynamics 2:63–90.

    Article  Google Scholar 

  • Marland, G., T. A. Boden, R. C. Griffen, S. F. Huang, P. Kanciruk, and T. R. Nelson. 1989. Estimates of CO2 emissions from fossil fuel burning and cement manufacturing based on the United Nations energy statistics and the US Bureau of Mines cement manufacturing data. ORNL/CDIAC-25, NDP-030. Oak Ridge National Laboratory, Oak Ridge, Tennessee, 712 pp.

    Google Scholar 

  • Moore, B., and A. Björkström. 1986. Calibrating ocean models by the constrained inverse method. Pages 295–328in J. R. Trabalka (ed.), Atmospheric carbon dioxide and the global carbon cycle. DOE/ER-0239. US Department of Energy, Washington, DC.

    Google Scholar 

  • Moore, B., R. D. Boone, J. E. Hobbie, R. A. Houghton, J. M. Melillo, B. J. Peterson, G. R. Shaver, C. J. Vörösmarty, and G. M. Woodwell. 1981. A simple model for analysis of the role of terrestrial ecosystems in the global carbon budget. Pages 365–385in B. Bolin (ed.), Carbon cycle modelling. SCOPE 16. J. Wiley & Sons, New York.

    Google Scholar 

  • Neftel, A., E. Moor, H. Oeschger, and B. Stauffer. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries.Nature 315:45–47.

    Article  CAS  Google Scholar 

  • Niehaus, F., and J. Williams. 1979. Studies of different energy strategies in terms of their effects on atmospheric CO2 concentration.Journal of Geophysical Research 84(C6):3123–3129.

    Article  CAS  Google Scholar 

  • Oeschger, H., and B. Stauffer. 1986. Review of the history of atmospheric CO2 recorded in ice cores. Pages 89–108in J. Trabalka and D. Reichle (eds.), The changing carbon cycle: A global analysis. Springer-Verlag, New York.

    Google Scholar 

  • Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann. 1975. A box diffusion model to study the carbon dioxide exchange in nature.Tellus 27:168–192.

    CAS  Google Scholar 

  • Olson, J. S., R. M. Garrels, R. A. Berner, T. V. Armentano, M. I. Dyer, and D. H. Yaalon. 1985. The natural carbon cycle. Pages 175–213,in J. R. Trabalka (ed.), Atmospheric carbon dioxide and the global carbon cycle. DOE/ER-0239. US Department of Energy, Washington, DC.

    Google Scholar 

  • Peng, T.-H. 1986. Uptake of anthropogenic CO2 by lateral transport models of the ocean based on the distribution of bomb-produced14C.Radiocarbon 28:363–375.

    CAS  Google Scholar 

  • Peng, T.-H., and H. D. Freyer. 1986. Revised estimates of atmospheric CO2 variations based on the tree-ring13C record. Pages 151–159in J. R. Trabalka and D. E. Reichle (eds.), The changing carbon cycle: A global analysis. Springer-Verlag, New York.

    Google Scholar 

  • Peng, T.-H., W. S. Broecker, H. D. Freyer, and S. Trumbore. 1983. A deconvolution of the tree-ring based δ13C record.Journal of Geophysical Research 88C:3609–3620.

    Google Scholar 

  • Perry, A. M. 1984. Atmospheric retention of anthropogenic CO2: Scenario dependence of the airborne fraction. EPRI EA-3466, Contract TPS 81-817. Electrical Power Research Institute, Inc., Palo Alto, California. Available from EPRI Research Reports Center, Palo Alto, California.

  • Peterson, B. J., and J. M. Melillo. 1985. The potential storage of carbon caused by eutrophication of the biosphere.Tellus 37B:117–127.

    CAS  Google Scholar 

  • Post, W. M., T.-H. Peng, W. R. Emanuel, A. W. King, V. H. Dale, and D. L. DeAngelis. 1990. The global carbon cycle.American Scientist 78:310–326.

    Google Scholar 

  • Raynaud, D., and J. M. Barnola. 1985. An Antarctic ice core reveals atmospheric CO2 variations over the past few centuries.Nature 315:309–311.

    Article  CAS  Google Scholar 

  • Robinson, J. M. 1989. On uncertainty in the computation of global emissions from biomass burning.Climatic Change 14:243–262.

    Article  CAS  Google Scholar 

  • Seidel, S., and D. Keyes. 1983. Can we delay a greenhouse warming. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Siegenthaler, U. 1983. Uptake of excess CO2 by an outcrop-diffusion model of the ocean.Journal of Geophysical Research 88C:3599–3608.

    Google Scholar 

  • Siegenthaler, U., and H. Oeschger. 1978. Predicting future atmospheric carbon dioxide levels.Science 199:388–395.

    CAS  Google Scholar 

  • Siegenthaler, U., and H. Oeschger. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice-core CO2 data.Tellus 39B:140–154.

    Article  CAS  Google Scholar 

  • Siegenthaler, U., H. Friedli, H. Loetscher, E. Moor, A. Neftel, H. Oeschger, and B. Stauffer. 1988. Stable-isotope ratios and concentrations of CO2 in air from polar ice cores.Annals of Glaciology 10:1–6.

    Google Scholar 

  • Strain, B. R., and T. V. Armentano. 1982. Response of “unmanaged” ecosystems, Volume II, Part 12 of Environmental and societal consequences of a possible CO2-induced climate change. DOE/EV/10019-12. US Department of Energy, Washington, DC, 45 pp.

    Google Scholar 

  • Stuiver, M., R. L. Burk, and P. D. Quay. 1984.13C/12C ratios in tree rings and the transfer of biospheric carbon to the atmosphere.Journal of Geophysical Research 89:11,731–11,748.

    CAS  Google Scholar 

  • Takahashi, T., W. S. Broecker, and S. R. Werner. 1980. Carbonate chemistry of the surface waters of the world oceans. Pages 291–326in E. Goldberg, Y. Hozibe, and K. Saruhashi (eds.), Isotope marine chemistry. Uchida Rokakuho, Tokyo, Japan.

    Google Scholar 

  • Takahashi, T., W. S. Broecker, and A. E. Bainbridge. 1981. The alkalinity and total carbon dioxide concentrations in the world oceans. Pages 271–286in B. Bolin (ed.), Carbon cycle modelling. SCOPE 16. John Wiley & Sons, New York.

    Google Scholar 

  • Tans, P. P., I. Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric CO2 budget.Science 247:1431–1438.

    CAS  Google Scholar 

  • Toggweiler, J. R., K. Dixon, and K. Bryan. 1989. Simulations of radiocarbon in a course resolution world ocean model. I. Steady state prebomb distributions.Journal of Geophysical Research 94(C6):8217–8242.

    CAS  Google Scholar 

  • Trabalka, J. R., J. A. Edmonds, J. M. Reilly, R. H. Gardner, and D. E. Reichle. 1986. Atmospheric CO2 projections with globally average carbon cycle models. Pages 534–560in J. R. Trabalka and D. E. Reichle (eds.), The changing carbon cycle: A global analysis. Springer-Verlag, New York.

    Google Scholar 

  • Tsonis, A. A., and J. B. Elsner. 1989. Testing the global warming hypothesis.Geophysical Research Letters 16:795–797.

    Google Scholar 

  • Zehnder, A. J. B. 1985. The carbon cycle. Pages 83–110in O. Huntzinger (ed.), The handbook of environmental chemistry, Vol. 1, Part B, The natural environment and the biogeochemical cycles. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The submitted manuscript has been authored by a contractor of the US Government under contract No. DE-AC05-84OR21400. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, A.W., Emanuel, W.R. & Post, W.M. Projecting future concentrations of atmospheric CO2 with global carbon cycle models: The importance of simulating historical changes. Environmental Management 16, 91–108 (1992). https://doi.org/10.1007/BF02393912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02393912

Key words

Navigation