Environmental Management

, Volume 18, Issue 3, pp 331–337 | Cite as

Assessing potential bioavailability of metals in sediments: A proposed approach

  • Gerald T. Ankley
  • Nelson A. Thomas
  • Dominic M. Di Toro
  • David J. Hansen
  • John D. Mahony
  • Walter J. Berry
  • Richard C. Swartz
  • Robert A. Hoke
  • A. Wayne Garrison
  • Herbert E. Allen
  • Christopher S. Zarba

Abstract

Due to anthropogenic inputs, elevated concentrations of metals frequently occur in aquatic sediments. In order to make defensible estimates of the potential risk of metals in sediments and/or develop sediment quality criteria for metals, it is essential to identify that fraction of the total metal in the sediments that is bioavailable. Studies with a variety of benthic invertebrates indicate that interstitial (pore) water concentrations of metals correspond very well with the bioavailability of metals in test sediments. Many factors may influence pore water concentrations of metals; however, in anaerobic sediments a key phase controlling partitioning of several cationic metals (cadmium, nickel, lead, zinc, copper) into pore water is acid volatile sulfide (AVS). In this paper, we present an overview of the technical basis for predicting bioavailability of cationic metals to benthic organisms based on pore water metal concentrations and metal-AVS relationships. Included are discussions of the advantages and limitations of metal bioavailability predictions based on these parameters, relative both to site-specific assessments and the development of sediment quality criteria.

Key words

Sediment Metal Bioavailability Toxicity Sediment quality criteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, W. J., R. A. Kimerle, and R. G. Mosher. 1985. Aquatic safety assessment of chemicals sorbed to sediments. Pages 429–453in R. D. Cardwell, R. Purdy and R. C. Bahner (eds.), Aquatic toxicology and hazard assessment: Seventh symposium. STP 854. American Society for Testing and Materials, Philadelphia, Pennsylvania.Google Scholar
  2. Allen, H. E., G. Fu, and B. Deng. 1993. Analysis of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments.Environmental Toxicology and Chemistry 12:1441–1453.Google Scholar
  3. Ankley, G. T., G. L. Phipps, E. N. Leonard, D. A. Benoit, V. R. Mattson, P. A. Kosian, A. M. Cotter, J. R. Dierkes, D. J. Hansen, and J. D. Mahony. 1991. Acid volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments.Environmental Toxicology and Chemistry 10:1299–1307.Google Scholar
  4. Ankley, G. T., V. R. Mattson, E. N. Leonard, C. W. West, and J. L. Bennett. 1993a. Predicting the acute toxicity of copper in freshwater sediments: Evaluation of the role of acid volatile sulfide.Environmental Toxicology and Chemistry 12:315–320.Google Scholar
  5. Ankley, G. T., E. N. Leonard, and V. R. Mattson. 1993b. Prediction of the bioaccumulation of metals from contaminated sediments by the oligochaete,Lumbriculus variegatus. Water Research (in press).Google Scholar
  6. Berner, R. A. 1967. Thermodynamic stability of sedimentary iron sulfides.American Journal of Science 265:773–785.CrossRefGoogle Scholar
  7. Berry, W. J., D. J. Hansen, J. D. Mahony, D. L. Robson, and J. M. Corbin. 1991. The role of acid volatile sulfide in controlling the toxicity of a metals mixture in sediment. Page 91in Abstracts of the 12th Annual Meeting of the Society of Environmental Toxicology and Chemistry. November 1991. Seattle, Washington.Google Scholar
  8. Campbell, P. G. C., and A. Tessier. 1991. Biological availability of metals in sediments: analytical approaches. Pages 161–174in J.-P. Vernet (ed.), Heavy metals in the environment. Elsevier, New York.Google Scholar
  9. Carlson, A. R., G. L. Phipps, V. R. Mattson, P. A. Kosian, and A. M. Cotter. 1991. The role of acid volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments.Environmental Toxicology and Chemistry 10:1309–1319.Google Scholar
  10. Di Toro, D. M., J. D. Mahony, D. J. Hansen, K. J. Scott, M. B. Hicks, S. M. Mayr, and M. S. Redmond. 1990. Toxicity of cadmium in sediments: The role of acid volatile sulfide.Environmental Toxicology and Chemistry 9:1487–1502.Google Scholar
  11. Di Toro, D. M., C. Zarba, D. J. Hansen, R. C. Swartz, C. E. Cowan, H. E. Allen, N. A. Thomas, P. R. Paquin, and W. J. Berry. 1991. Technical basis for establishing sediment quality criteria for non-ionic organic chemicals using equilibrium partitioning.Environmental Toxicology and Chemistry 10:1541–1583.Google Scholar
  12. Di Toro, D. M., J. D. Mahony, D. J. Hansen, K. J. Scott, A. R. Carlson, and G. T. Ankley. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments.Environmental Science and Technology 26:96–101.CrossRefGoogle Scholar
  13. Goldhaber, M. B. and I. R. Kaplan. 1974. The sulfur cycle. Pages 569–655in E. D. Goldberg (ed.), Sea, Vol. 5—Marine chemistry. John Wiley & Sons, New York.Google Scholar
  14. Hansen, D. J., W. J. Berry, J. D. Mahony, A. R. Carlson, K. M. McKenna, and D. L. Robson. 1990. Acid volatile sulfide controls divalent metal toxicity in sediments. Page 88in Abstracts of the 11th Annual meeting of the Society of Environmental Toxicology and Chemistry, Washington, DC.Google Scholar
  15. Leonard, E. N., V. R. Mattson, D. A. Benoit, R. A. Hoke, and G. T. Ankley. 1993. Seasonal variation of acid volatile sulfide in sediments from three northeastern Minnesota lakes.Hydrobiologia (in press).Google Scholar
  16. Luoma, S. N. 1989. Can we determine the biological availability of sediment-bound trace elements?Hydrobiologia 176/177:379–396.CrossRefGoogle Scholar
  17. Mahony, J. D., D. M. Di Toro, A. M. Gonzalez, D. J. Hansen, W. J. Berry, and G. T. Ankley. 1991. A sediment component in addition to acid volatile sulfide that may further control toxicity of metals. Page 91in Abstracts of the 12th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Seattle, Washington.Google Scholar
  18. Swartz, R. C., G. R. Ditsworth, D. W. Schults, and J. O. Lamberson. 1985. Sediment toxicity to a marine infaunal amphipod: Cadmium and its interaction with sewage sludge.Marine Environmental Research 18:133–153.CrossRefGoogle Scholar
  19. Swartz, R. C., D. W. Schults, T. H. DeWitt, G. R. Ditsworth, and J. O. Lamberson. 1990. Toxicity of fluoranthene in sediment to marine amphipods: A test of the equilibrium partitioning approach to sediment quality criteria.Environmental Toxicology and Chemistry 9:1071–1080.Google Scholar
  20. Tessier, A., and P. G. C. Campbell. 1987. Partitioning of trace metals in sediments: Relationships with bioavailability.Hydrobiologia 149:43–52.CrossRefGoogle Scholar
  21. Tessier, A., Y. Couillard, P. G. C. Campbell, and J. C. Auclair. 1993. Modeling cadmium partitioning in oxic lake sediments and Cd concentrations in the freshwater bivalveAnodonta grandis (Mollusca, Pelecypoda).Limnology and Oceanography 38:1–17.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • Gerald T. Ankley
    • 1
  • Nelson A. Thomas
    • 1
  • Dominic M. Di Toro
    • 2
  • David J. Hansen
    • 3
  • John D. Mahony
    • 4
  • Walter J. Berry
    • 5
  • Richard C. Swartz
    • 6
  • Robert A. Hoke
    • 7
  • A. Wayne Garrison
    • 8
  • Herbert E. Allen
    • 9
  • Christopher S. Zarba
    • 10
  1. 1.US Environmental Protection AgencyDuluthUSA
  2. 2.Hydroqual, Inc.MahwahUSA
  3. 3.US Environmental Protection AgencyNarragansettUSA
  4. 4.Chemistry DepartmentManhattan CollegeBronxUSA
  5. 5.SAIC CorporationNarragansettUSA
  6. 6.US Environmental Protection AgencyHatfield Marine Science Center Marine Science DriveNewportUSA
  7. 7.SAIC CorporationHackensackUSA
  8. 8.US Environmental Protection AgencyAthensUSA
  9. 9.Department of Civil EngineeringUniversity of DelawareNewarkUSA
  10. 10.US Environmental Protection AgencyWashington, DCUSA

Personalised recommendations