Environmental Management

, Volume 15, Issue 1, pp 59–71 | Cite as

A new method for predicting vegetation distributions using decision tree analysis in a geographic information system

  • D. M. Moore
  • B. G. Lees
  • S. M. Davey


Decision tree analysis was used to predict the distribution of forest communities in an area on the south coast of New South Wales, Australia. The analysis was carried out using a geographical information system environmental data base of those topographic and geological variables thought to influence the distribution of vegetation and derived from cartographic sources. The resulting maps of forest communities are of a resolution sufficient to delimit individual forest stands and contain much ecological information.

Key words

Vegetation Prediction Distribution Decision tree analysis Geographic information system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Austin, M. P. 1985. Continuum concept, ordination methods, and niche theory.Annual Reviews of Ecology and Systematics 16:39–61.CrossRefGoogle Scholar
  2. Austin, M. P., R. B. Cunningham, and P. M. Fleming. 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures.Vegetatio 55:11–27.CrossRefGoogle Scholar
  3. Berry, J. K. 1987. A mathematical structure for analyzing maps.Environmental Management 11(3):317–325.CrossRefGoogle Scholar
  4. Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and regression trees. Wadsworth, Belmont, California.Google Scholar
  5. CMA. 1982. Topographic map 1:25000 KIOLOA 8926-I-N, 3rd ed. Central Mapping Authority. Bathurst, NSW.Google Scholar
  6. Cocks, K. D., and I. A. Baird. 1990. The role of geographic information systems in the collection, extrapolation and use of survey data.In C. Margill (ed.), Workshop on cost effective survey methods for nature conservation. Australian Environment Council, Sydney.Google Scholar
  7. Congalton, R. G. 1988. A comparison of sampling schemes used in generating error matrices for assessing the accuracy of map generated from remotely sensed data.Photogrammetric Engineering and Remote Sensing 54(5):593–600.Google Scholar
  8. Davey, S. M. 1989. The environmental relationships of arboreal marsupials in a eucalypt forest: a basis for Australian wildlife management. PhD thesis. Forestry Department, Australian National University, Canberra, Australia.Google Scholar
  9. Davey, S. M., and T. W. Norton. 1989. State forests in Australia and their role in wildlife conservation.In D. A. Saunders, A. J. M. Hopkins, and R. A. How (eds.), Australian ecosystems: 200 years of utilisation, degradation and reconstruction. Surrey Beatty and Sons and the Australian Ecological Society, Sydney (in press).Google Scholar
  10. Davey, S. M., and J. J. Russel-Smith. 1984. A case study in collecting resource information for forest managers. Pages 263–274in K. Myers, C. R. Margules, and I. Musto (eds.), Survey methods for nature conservation, Vol. 2. CSIRO, Canberra.Google Scholar
  11. Galloway, R. W. 1976. Geology. Pages 17–19 M. P. Austin and K. D. Cocks (eds.), Land use on the south coast of New South Wales, Vol 2, Bio-physical background studies. CSIRO, Canberra, Australia.Google Scholar
  12. Gostin, V. A. 1969. Stratigraphy and sedimentology of the lower Permian sequence in the Durras-Ulladulla area Sydney Basin, N.S.W. PhD thesis. Department of Geology, Australian National University, Canberra, Australia.Google Scholar
  13. Hutchinson, M. F. 1989. A new method for gridding elevation and streamline data with automatic removal of spurious pits.Journal of Hydrology 106:211–232.CrossRefGoogle Scholar
  14. Kuchler, A. W. 1988. The classification of vegetation. Pages 67–80in A. W. Kuchler and I. S. Zonneveld (eds.), Vegetation mapping. Kluwer Academic Publishers, Dordrect.Google Scholar
  15. McColl, J. G. 1969. Soil-plant relationships in a eucalyptus forest on the south coast of New South Wales.Ecology 50:354–362.CrossRefGoogle Scholar
  16. McColl, J. G., and F. R. Humphreys. 1967. Relationships between some nutritional factors and the distributions ofEucalyptus gummifera andEucalyptus maculata.Ecology 48:766–771.CrossRefGoogle Scholar
  17. McCutchin, G. R. 1978. Species distribution and environmental relationships in a south coast forest. Honors thesis. Australian National University, Canberra, Australia.Google Scholar
  18. Moore, D. M. 1988. SIMPLE: an analytical system for spatial data. BSc honors thesis. Geography Department, Australian National University, Canberra, Australia.Google Scholar
  19. Quinlan, J. R. 1986. Induction of decision trees.Machine Learning 1:81–106.Google Scholar
  20. Rauscher, T. M., and T. M. Cooney. 1986. Using expert system technology in a forestry application: the CHMAPS experience.Journal of Forestry 843:14–17.Google Scholar
  21. Skidmore, A. K. 1989a. An expert system classifies eucalypt forest types using thematic mapper data and a digital terrain model.Photogrammetric Engineering and Remote Sensing 54(10):1415–1421.Google Scholar
  22. Skidmore, A. K. 1989b. Unsupervised training area selection in forests using a non-parametric distance measure and spatial information.International Journal of Remote Sensing 10(1):133–146.Google Scholar
  23. Tomlin, C. D. 1983. Digital cartographic modelling techniques in environmental planning. Unpublished PhD dissertation. Yale University, New Haven, Connecticut.Google Scholar
  24. Turner, B. J., and D. M. Moore. 1987. Can SPOT help the forest manager? Fourth Australian Remote Sensing Conference. pp. 776–787.Google Scholar
  25. Turner, J., J. Kelly, and L. A. Newman. 1978. Soil nutrientvegetation relationships in the Eden area. N.S.W. II. vegetation-soil associations.Australian Journal of Forestry 41:208–223.Google Scholar
  26. Walker, P. A., and D. M. Moore. 1988. SIMPLE—an inductive modelling tool for spatially distributed data.International Journal of Geographical Information Systems 2:1.Google Scholar
  27. Williams, G. J. 1987. Some experiments in decision tree induction.The Australian Computer Journal 19(2):84–91.Google Scholar
  28. Whittaker, R. H. (ed.). 1978. Ordination of plant communities. Handbook of vegetation science, No 5. Junk, The Hague.Google Scholar
  29. Zonneveld, I. S. 1988. Survey approaches. Pages 203–209in A. W. Kuchler and I. S. Zonneveld (eds.), Vegetation mapping. Kluwer Academic Publishers, Dordrect.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • D. M. Moore
    • 1
  • B. G. Lees
    • 1
  • S. M. Davey
    • 1
  1. 1.Department of Geography Department of ForestryAustralian National UniversityCanberraAustralia

Personalised recommendations