Acta Mathematica

, Volume 91, Issue 1, pp 75–86 | Cite as

Solutions of differential equations as analytic functionals of the coefficient functions

  • A. D. Michal
  • D. H. Hyers


Differential Equation Analytic Functional Coefficient Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    A. D. Michal, On a non-linear total differential equation in normed linear spaces,Acta Mathematica, vol. 80, 1–21 (1948).MATHMathSciNetGoogle Scholar
  2. [2]
    , Solutions of systems of linear differential equations as entire analytic functionals of coefficient functions.Mathematics Magazine, vol. 22, 57–66 (1948).MathSciNetCrossRefGoogle Scholar
  3. [3]
    A. D. Michal andA. H. Clifford, Fonctions analytiques implicites dans des espaces vectoriels abstraits,Comptes Rendus, Paris, vol. 197, 735–737 (1933).Google Scholar
  4. [4]
    A. E. Taylor, Analytic functions in general analysis,Annali della R. Scuola Normale Superiore di Pisa, Series 1], vol 6, 277–292 (1937). This is a shortened account ofTaylor's California Institute of Technology Thesis, 1936.MATHGoogle Scholar
  5. [5]
    M. Kerner, Die Differentiale in der Allgemeinen Analysis,Annals of Math., vol. 34, 546–572 (1933).CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    E. Hille, Functional Analysis and Semi-Groups,American Mathematical Society Colloquium Publication, vol. 31 (1948).Google Scholar
  7. [7]
    M. Fréchet, La notion de différentielle dans l'Analyse Générale,Ann. Ec. Norm. Sup. t. XLII, 293–323 (1925). This paper is reproduced inFréchet's recent book: “Pages choisies d'Analyse générale”, pp. 180–204, Gauthier-Villars, 1953.Google Scholar
  8. [8]
    A. D. Michal, Functional analysis in topological group spaces,Mathematics Magazine, vol. XXI, 80–90 (1947).MathSciNetCrossRefGoogle Scholar
  9. [9]
    A. D. Michal andR. S. Martin, Some expansions in vector space,Journal de Math. Pures et Appliquées. vol. 13, 69–91 (1934).MATHGoogle Scholar
  10. [10]
    R. S. Martin, “Contributions to the theory of functionals”, California Institute of Technology Thesis, 1932 (unpublished).Google Scholar
  11. [11]
    T. H. Hildebrandt andL. M. Graves, Implicit functions and their differentials in general analysis,Trans. American Math. Soc., vol. 29, 127–153 (1927).CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri 1954

Authors and Affiliations

  • A. D. Michal
    • 1
  • D. H. Hyers
    • 2
  1. 1.California Institute of TechnologyUSA
  2. 2.University of Southern CaliforniaUSA

Personalised recommendations