Acta Mathematica

, Volume 91, Issue 1, pp 75–86 | Cite as

Solutions of differential equations as analytic functionals of the coefficient functions

  • A. D. Michal
  • D. H. Hyers


Differential Equation Analytic Functional Coefficient Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    A. D. Michal, On a non-linear total differential equation in normed linear spaces,Acta Mathematica, vol. 80, 1–21 (1948).MATHMathSciNetGoogle Scholar
  2. [2]
    , Solutions of systems of linear differential equations as entire analytic functionals of coefficient functions.Mathematics Magazine, vol. 22, 57–66 (1948).MathSciNetCrossRefGoogle Scholar
  3. [3]
    A. D. Michal andA. H. Clifford, Fonctions analytiques implicites dans des espaces vectoriels abstraits,Comptes Rendus, Paris, vol. 197, 735–737 (1933).Google Scholar
  4. [4]
    A. E. Taylor, Analytic functions in general analysis,Annali della R. Scuola Normale Superiore di Pisa, Series 1], vol 6, 277–292 (1937). This is a shortened account ofTaylor's California Institute of Technology Thesis, 1936.MATHGoogle Scholar
  5. [5]
    M. Kerner, Die Differentiale in der Allgemeinen Analysis,Annals of Math., vol. 34, 546–572 (1933).CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    E. Hille, Functional Analysis and Semi-Groups,American Mathematical Society Colloquium Publication, vol. 31 (1948).Google Scholar
  7. [7]
    M. Fréchet, La notion de différentielle dans l'Analyse Générale,Ann. Ec. Norm. Sup. t. XLII, 293–323 (1925). This paper is reproduced inFréchet's recent book: “Pages choisies d'Analyse générale”, pp. 180–204, Gauthier-Villars, 1953.Google Scholar
  8. [8]
    A. D. Michal, Functional analysis in topological group spaces,Mathematics Magazine, vol. XXI, 80–90 (1947).MathSciNetCrossRefGoogle Scholar
  9. [9]
    A. D. Michal andR. S. Martin, Some expansions in vector space,Journal de Math. Pures et Appliquées. vol. 13, 69–91 (1934).MATHGoogle Scholar
  10. [10]
    R. S. Martin, “Contributions to the theory of functionals”, California Institute of Technology Thesis, 1932 (unpublished).Google Scholar
  11. [11]
    T. H. Hildebrandt andL. M. Graves, Implicit functions and their differentials in general analysis,Trans. American Math. Soc., vol. 29, 127–153 (1927).CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri 1954

Authors and Affiliations

  • A. D. Michal
    • 1
  • D. H. Hyers
    • 2
  1. 1.California Institute of TechnologyUSA
  2. 2.University of Southern CaliforniaUSA

Personalised recommendations