World Journal of Surgery

, Volume 4, Issue 3, pp 279–287 | Cite as

Contraction and the control of contraction

  • Ross Rudolph


Wound contraction is a basic mechanism for wound closure that can be lifesaving. Yet, wound contraction can also produce considerable deformity and misery in conditions as diverse as burn scar contracture, cirrhosis, Dupuytren's contracture, and contracture around silicone tissue implants. Current evidence suggests that wound contraction is a cellular function of contractile fibroblasts (myofibroblasts). These cells share the electron microscopic appearance of both fibroblasts and smooth muscle cells. Pharmacologically and immunologically, myofibroblasts have many characteristics of smooth muscle cells. Active wound contraction caused by myofibroblasts can lead to fixed, rigid scar contracture. Contracture associated with poor joint positioning can also occur passively due to collagen reorganization alone, without myofibroblast involvement.

Control of contraction (and contracture) can be achieved theoretically by 3 modes of therapy. Physical means, including range of motion exercises, splinting, and full thickness skin grafting after surgical release, are used currently. Biochemical control of myofibroblast contraction by agents that affect tissue-cultured fibroblasts has the potential of reducing wound contraction. Inhibition of collagen synthesis, inhibition of cross-linking, or increased collagenolysis may eventually be clinically useful, and would be of value in controlling both contracture due to active wound contraction, and contracture due to passive positioning.


Full Thickness Skin Biochemical Control Wound Contraction Scar Contracture Active Wound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La rétraction de la plaie est un mécanisme de base de la cicatrisation. Mais elle peut également produire d'importantes déformations dans des conditions diverses, telles que rétraction des brûlures, cirrhose, maladie de Dupuytren, rétraction autour des implants de silicone. Les données actuelles suggèrent qu'elle résulte de l'action de fibroblastes contractiles (myofibroblastes). Ces cellules ont, en microscopie électronique, une structure qui les apparente à la fois aux fibroblastes et aux cellules musculaires lisses. Aux points de vue pharmacologique et immunologique, le myofibroblaste présente de nombreux caractères de la cellule musculaire lisse. La rétraction active des plaies par les myofibroblastes peut être responsable de cicatrices fixées, rigides. Les contractures qui apparaissent au voisinage des articulations immobilisées en mauvaise position peuvent également être de cause passive, par réorganisation du collagène et sans participation des myofibroblastes. Trois types de traitement peuvent, en théorie, contrôler la rétraction et sont couramment utilisés: physiothérapie, y compris les exercises de mobilisation, pose d'attelles, greffe de peau totale après résection du tissu cicatriciel. La rétraction de la plaie peut également être diminuée par les substances qui agissent sur les fibroblastes en culture et qui réduisent la contractilité des myofibroblastes. Une inhibition de la synthèse du collagène et de ses liaisons, une collagènolyse accrue seront peut-être un jour utiles en clinique, pour contrôler à la fois la rétraction active de la plaie et la rétraction passive de position.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Winkle, W., Jr.: Wound contraction. Surg. Gynecol. Obstet.125:131, 1967PubMedGoogle Scholar
  2. 2.
    Peacock, E.E., Jr., Van Winkle, W., Jr.: Wound Repair, 2nd edition, Philadelphia, W.B. Saunders Co., 1976, pp. 54–80Google Scholar
  3. 3.
    Peacock, E.E., Jr.: Pharmacological control of surgical scar tissue. Am. Surg.44:693, 1978PubMedGoogle Scholar
  4. 4.
    Peacock, E.E., Jr., Madden, J.W.: Administration of beta-aminoproprionitrile to human beings with urethral strictures: a preliminary report. Am. J. Surg.136:600, 1978CrossRefPubMedGoogle Scholar
  5. 5.
    Guber, S., Rudolph, R.: Collective review—the myofibroblast. Surg. Gynecol. Obstet.146:641, 1978PubMedGoogle Scholar
  6. 6.
    Abercrombie, M., Flint, M.H., James, D.W.: Wound contraction in relation to collagen formation in scorbutic guinea pigs. J. Embryol. Exp. Morphol.4:167, 1956Google Scholar
  7. 7.
    Gabbiani, G., Ryan, G.B., Majno, G.: Presence of modified fibroblasts in granulation tissue and possible role of wound contraction. Experientia27:549, 1971CrossRefPubMedGoogle Scholar
  8. 8.
    Gabbiani, G., Hirschel, B.J., Ryan, G.B., Statkov, P.R., Majno, G.: Granulation tissue as a contractile organ: a study of structure and function. J. Exp. Med.135:719, 1972CrossRefPubMedGoogle Scholar
  9. 9.
    Gabbiani, G., Le Louis, M., Bailey, A.J., Bazin, S., Delaunay, A.: Collagen and myofibroblasts of granulation tissue. Virchow's Arch. (Cell Pathol.)21:133, 1976Google Scholar
  10. 10.
    Rudolph, R., Woodward, M.: Spatial orientation of microtubules in contractile fibroblastsin vivo. Anat. Rec.191:169, 1978CrossRefPubMedGoogle Scholar
  11. 11.
    Baur, P.S., Larson, D.L., Stacey, T.R.: The observation of myofibroblasts in hypertrophic scars. Surg. Gynecol. Obstet.141:22, 1975PubMedGoogle Scholar
  12. 12.
    Baur, P.S., Barratt, G., Linares, H.A., Dobrkovsky, M., de la Houssaye, A.J., Larson, D.L.: Wound contractions, scar contractures, and myofibroblasts: a classical case study. J. Trauma18:8, 1978PubMedCrossRefGoogle Scholar
  13. 13.
    Gabbiani, G., Chaponnier, C., Hüttner, I.: Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J. Cell Biol.76:561, 1978CrossRefPubMedGoogle Scholar
  14. 14.
    Baker, J.M., Jr., Chandler, M.L., Bejarano, M.A., LeVier, R.R.: Occurrence and activity of myofibroblasts in human capsular tissue surrounding mammary implants. Presented at American Society for Aesthetic Plastic Surgery, Colorado Springs, May, 1979, and submitted for publicationGoogle Scholar
  15. 15.
    Gabbiani, G., Ryan, G.B., Lamelin, J.-P., Vassalli, P., Majno, G., Bouvier, C.A., Cruchaud, A., Lüscher, E.F.: Human smooth muscle auto-antibody: its identification as antiactin antibody and a study of its binding to “nonmuscular” cells. Am. J. Pathol.72:473, 1973PubMedGoogle Scholar
  16. 16.
    Rudolph, R., Guber, S., Suzuki, M., Woodward, M.: The life cycle of the myofibroblast. Surg. Gynecol. Obstet.145:389, 1977PubMedGoogle Scholar
  17. 17.
    Rudolph, R., Abraham, J., Vecchione, T., Guber, S., Woodward, M.: Myofibroblasts and free silicon around breast implants. Plast. Reconstr. Surg.62:185, 1978PubMedGoogle Scholar
  18. 18.
    Rudolph, R., McClure, W., Woodward, M.: Contractile fibroblasts in chronic alcoholic cirrhosis. Gastroenterology76: 704, 1979PubMedGoogle Scholar
  19. 19.
    Gelberman, R.H., Amiel, D., Rudolph, R., Vance, R.M.: Dupuytren's contracture. An electron microscopic, biochemical, and clinical correlative study. J. Bone Joint Surg. (in press)Google Scholar
  20. 20.
    Gabbiani, G., Majno, G.: Dupuytren's contracture, fibroblast contraction, and ultrastructural study. Am. J. Pathol.66:131, 1972PubMedGoogle Scholar
  21. 21.
    Madden, J.W., Carlson, E.C., Hines, J.: Presence of modified fibroblasts in ischemic contracture of the intrinsic musculature of the hand. Surg. Gynecol. Obstet.140:509, 1975PubMedGoogle Scholar
  22. 22.
    Madden, J.W.: On “the contractile fibroblast.” Plast. Reconstr. Surg.52:291, 1973PubMedGoogle Scholar
  23. 23.
    Rudolph, R.: Location of the force of wound contraction. Surg. Gynecol. Obstet.148:547, 1979PubMedGoogle Scholar
  24. 24.
    Rudolph, R., Woodward, M., Hurn, I.: The ultrastructure of passive versus active wound contracture. Surg. Gynecol. Obstet. (in press)Google Scholar
  25. 25.
    Cronin, T.D.: The use of molded splint to prevent contracture after split skin grafting on the neck. Plast. Reconstr. Surg.27:7, 1961Google Scholar
  26. 26.
    Rudolph, R.: The effect of skin graft preparation on wound contraction. Surg. Gynecol. Obstet.142:49, 1976PubMedGoogle Scholar
  27. 27.
    Rudolph, R., Guber, S., Woodward, M.: Inhibition of myofibroblasts by skin grafts. Plast. Reconstr. Surg.63:473, 1979PubMedCrossRefGoogle Scholar
  28. 28.
    Morton, D., Jr., Madden, J.W., Peacock, E.E., Jr.: Effect of a local smooth muscle antagonist on wound contraction. Surg. Forum23:51, 1972Google Scholar
  29. 29.
    Madden, J.W., Morton, D., Jr., Peacock, E.E., Jr.: Contraction of experimental wounds. I. Inhibiting wound contraction by using a topical smooth muscle antagonist. Surgery76:8, 1974PubMedGoogle Scholar
  30. 30.
    Ehrlich, H.P., Grislis, G., Hunt, T.K.: Evidence for the involvement of microtubules in wound contraction. Am. J. Surg.133:706, 1977CrossRefPubMedGoogle Scholar
  31. 31.
    Rojkind, M., Uribe, M., Kershenobich, D.: Colchicine and the treatment of liver fibrosis. Lancet1:38, 1973CrossRefGoogle Scholar
  32. 32.
    Rojkind, M., Kershenobich, D.: Hepatic Fibrosis. In Progress in Liver Disease, Vol. 5, Propper, H., Schaffner, F., editors, New York, Grune and Stratton, 1976, pp. 294–310Google Scholar
  33. 33.
    Rudolph, R., Hurn, I., Woodward, M.: The use of colchicine to inhibit wound contraction. Annals of Surg. (in press)Google Scholar
  34. 34.
    Cohen, I.K., McCoy, B.J., Diegelmann, R.F.: An update on wound healing. Ann. Plast. Surg.3:264, 1979PubMedGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 1980

Authors and Affiliations

  • Ross Rudolph
    • 1
  1. 1.Department of Surgery and Division of Plastic SurgeryUniversity of California, San Diego, and Veterans Administration HospitalLa JollaUSA

Personalised recommendations