Ahlfors, L. V., Bounded analytic functions.Duke Math. J., 14 (1947), 1–11.
Article
MATH
MathSciNet
Google Scholar
Christ, M., AT (b) theorem with remarks on analytic capacity and the Cauchy integral.Colloq. Math. 60/61 (1990), 601–628.
MathSciNet
Google Scholar
David, G.,Wavelets and Singular Integrals on Curves and Surfaces. Lecture Notes in Math., 1465. Springer-Verlag, Berlin, 1991.
Google Scholar
— Unrectifiable 1-sets have vanishing analytic capacity.Rev. Mat. Iberoamericana, 14 (1998), 369–479.
MATH
MathSciNet
Google Scholar
— Analytic capacity, Calderón-Zygmund operators, and rectificability.Publ. Mat., 43 (1999), 3–25.
MATH
MathSciNet
Google Scholar
David, G. &Mattila, P., Removable sets for Lipschitz harmonic functions in the plane.Rev. Mat. Iberoamericana, 16 (2000), 137–215.
MathSciNet
Google Scholar
Davie, A. M., Analytic capacity and approximation problems.Trans. Amer. Math. Soc., 171 (1972), 409–444.
Article
MATH
MathSciNet
Google Scholar
Davie, A. M. &Øksendal, B., Analytic capacity and differentiability properties of finely harmonic functions.Acta Math., 149 (1982), 127–152.
MathSciNet
Google Scholar
Garnett, J.,Analytic Capacity and Measure. Lecture Notes in Math., 297. Springer-Verlag, Berlin-New York, 1972.
Google Scholar
Jones, P. W., Rectifiable sets and the traveling salesman problem.Invent. Math., 102, (1990), 1–15.
Article
MATH
MathSciNet
Google Scholar
Jones, P. W. &Murai, T., Positive analytic capacity but zero Buffon needle probability.Pacific J. Math., 133 (1988), 99–114.
MathSciNet
Google Scholar
Léger, J. C., Menger curvature and rectifiability.Ann. of Math. (2), 149 (1999), 831–869.
Article
MATH
MathSciNet
Google Scholar
Mattila, P., Smooth maps, null-sets for integralgeometric measure and analytic capacity.Ann. of Math. (2), 123 (1986), 303–309.
Article
MATH
MathSciNet
Google Scholar
—Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995.
Google Scholar
Mattila, P. Rectifiability, analytic capacity, and singular integrals, inProceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998).Doc. Math., 1998, Extra Vol. II, 657–664 (electronic).
Mattila, P., Melnikov, M. S. &Verdera, J., The Cauchy integral, analytic capacity, and uniform rectifiability.Ann. of Math. (2), 144 (1996), 127–136.
Article
MathSciNet
Google Scholar
Mattila, P. &Paramonov, P. V., On geometric properties of harmonic Lip1-capacity.Pacific J. Math., 171 (1995), 469–491.
MathSciNet
Google Scholar
— On density properties of the Riesz capacities and the analytic capacity γ+.Tr. Mat. Inst. Steklova, 235 (2001), 143–156 (Russian); English translation inProc. Steklov Inst. Math., 235 (2001), 136–149.
MathSciNet
Google Scholar
Melnikov, M. S., Estimate of the Cauchy integral over an analytic curve.Mat. Sb. (N.S.), 71 (113), (1966), 503–514 (Russian); English translation inAmer. Math. Soc. Transl. Ser. 2, 80 (1969), 243–256.
MATH
MathSciNet
Google Scholar
— Analytic capacity: a discrete approach and the curvature of measure.Mat. Sb., 186:6 (1995), 57–76 (Russian); English translation inSb. Math., 186 (1995), 827–846.
MATH
MathSciNet
Google Scholar
Melnikov, M. S. & Verdera, J.. A geometric proof of theL
2 boundedness of the Cauchy integral on Lipschitz graphs.Internat. Math. Res. Notices 1995, 325–331.
Mateu, J., Tolsa, X. &Verdera, J., The planar Cantor sets of zero analytic capacity and the localT(b)-theorem.J. Amer. Math. Soc., 16 (2003), 19–28.
Article
MathSciNet
Google Scholar
Murai, T.,A Real Variable Method for the Cauchy Transform, and Analytic Capacity. Lecture Notes in Math. 1307. Springer-Verlag, Berlin, 1988.
Google Scholar
Nazarov, F., Treil, S. &Volberg, A., TheTb-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin. Preprint, Centre de Recerca Matemàtica, Barcelona, 2002.
Google Scholar
— Accretive systemTb-theorems on nonhomogeneous spaces.Duke Math. J., 113 (2002), 259–312.
Article
MathSciNet
Google Scholar
Nazarov, F., Treil, S. & Volberg, A. TheTb-theorem on non-homogeneous spaces. To appear inActa Math. (2003).
Pajot, H.,Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral. Lecture Notes in Math., 1799. Springer-Verlag, Berlin, 2002.
Google Scholar
Suita, N., On subadditivity of analytic capacity for two continua.Kodai Math. J., 7 (1984), 73–75.
MATH
MathSciNet
Google Scholar
Tolsa, X., Curvature of measures, Cauchy singular integral and analytic capacity. Ph.D. Thesis, Universitat Autònoma de Barcelona, 1998.
—L
2-boundedness of the Cauchy integral operator for continuous measures.Duke Math. J., 98 (1999), 269–304.
Article
MATH
MathSciNet
Google Scholar
— Principal values for the Cauchy integral and rectifiability.Proc. Amer. Math. Soc., 128 (2000), 2111–2119.
Article
MATH
MathSciNet
Google Scholar
— On the analytic capacity γ+.Indiana Univ. Math. J., 51 (2002), 317–343.
Article
MATH
MathSciNet
Google Scholar
Verdera, J., Removability, capacity and approximation, inComplex Potential Theory (Montreal, PQ 1993), pp. 419–473. NATO Adv. Sci. Int. Ser. C Math. Phys. Sci., 439. Kluwer, Dordrecht, 1994.
Google Scholar
— On theT(1)-theorem for the Cauchy integral.Ark. Mat., 38, (2000), 183–199.
Article
MATH
MathSciNet
Google Scholar
Verdera, J., Melnikov, M. S. &Paramonov, P. V.,C
1-approximation and the extension of subharmonic functions.Mat. Sb., 192:4 (2001), 37–58 (Russian); English translation inSb. Math., 192 (2001), 515–535.
MathSciNet
Google Scholar
Vitushkin, A. G., The analytic capacity of sets in problems of approximation theory.Uspekhi Mat. Nauk, 22:6 (1967), 141–199. (Russian); English translation inRussian Math. Surveys, 22 (1967), 139–200.
MATH
Google Scholar
Vitushkin, A. G. &Melnikov, M. S., Analytic capacity and rational approximation, inLinear and Complex Analysis Problem Book pp. 495–497. Lecture Notes in Math., 1403. Springer-Verlag, Berlin, 1984.
Google Scholar