Advertisement

Acta Mathematica

, Volume 194, Issue 2, pp 203–216 | Cite as

Pluripolar graphs are holomorphic

  • Nikolay Shcherbina
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Alexander, H., Linking and holomorphic hulls.J. Differential Geom., 38 (1993), 151–160.MATHMathSciNetGoogle Scholar
  2. [B]
    Browder, A., Cohomology of maximal ideal spaces.Bull. Amer. Math. Soc., 67 (1961), 515–516.MATHMathSciNetCrossRefGoogle Scholar
  3. [C]
    Chirka, E. M.,Complex Analytic Sets. “Nauka”, Moscow, 1985 (Russian); English translation: Mathematics and its Applications (Soviet Series), 46. Kluwer, Dordrecht, 1989.MATHGoogle Scholar
  4. [CH]
    Chirka, E. M. &Henkin, G. M., Boundary properties of holomorphic functions of several complex variables, inCurrent Problems in Mathematics, 4, pp. 12–142. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1975 (Russian).Google Scholar
  5. [E]
    Edigarian, A., Graphs of multifunctions.Math. Z., 250 (2005), 145–147.CrossRefMATHMathSciNetGoogle Scholar
  6. [H]
    Hörmander, L.,An Introduction to Complex Analysis in Several, Variables, 3rd edition. North-Holland Mathematical Library, 7. North-Holland, Amsterdam, 1990.MATHGoogle Scholar
  7. [J]
    Josefson, B., On the equivalence between locally polar and globally polar sets for plurisubharmonic functions onC n.Ark. Mat., 16 (1978), 109–115.CrossRefMATHMathSciNetGoogle Scholar
  8. [N1]
    Nishino, T., Sur les valeurs exceptionnelles au sens de Picard d'une fonction entière de deux variables.J. Math. Kyoto Univ., 2 (1962/63), 365–372.MathSciNetGoogle Scholar
  9. [N2]
    —,Function Theory in Several Complex Variables. Translated from the 1996 Japanese original. Transl. Math. Monographs, 193. Amer. Math. Soc., Providence, RI, 2001.MATHGoogle Scholar
  10. [O]
    Ohsawa, T., Analyticity of complements of complete Kähler domains.Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 484–487.MATHMathSciNetCrossRefGoogle Scholar
  11. [Sh]
    Shcherbina, N., Pluripolar multifunctions are analytic. Preprint, 2003.Google Scholar
  12. [Sp]
    Spanier, E. H.,Algebraic Topology. McGraw-Hill, New York-Toronto-London, 1966.MATHGoogle Scholar
  13. [T]
    Tsuji, M.,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.MATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2005

Authors and Affiliations

  • Nikolay Shcherbina
    • 1
  1. 1.Department of MathematicsUniversity of WuppertalWuppertalGermany

Personalised recommendations