Acta Mathematica

, Volume 151, Issue 1, pp 209–230 | Cite as

K-theory for certain groupC*-algebras

  • E. Christopher Lance
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arveson, W. B., Notes on extensions ofC *-algebras.Duke Math. J., 44 (1977), 329–355.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    Cuntz, J., TheK-groups for free products ofC *-algebras.Proc. Sympos. Pure Math., vol. 38 Part I, Amer. Math. Soc., Providence (1982), 81–84.Google Scholar
  3. [3]
    Dixmier, J.,Les C *-algèbres et leurs representations. Gauthier-Vilalrs, Paris, 1964.Google Scholar
  4. [4]
    Greenleaf, F. P.,Invariant means on topological groups. Van Nostrand-Reinhold, New York, 1969.Google Scholar
  5. [5]
    Kazhdan, D. A., Connection of the dual space of a group with the structure of its closed subgroups,Functional Anal. Appl., 1 (1967), 63–65.CrossRefMATHGoogle Scholar
  6. [6]
    Pimsner, M. V. &Voiculescu, D.,K-groups of reduced crossed products by free groups.J. Operator Theory, 8 (1982), 131–156.MathSciNetGoogle Scholar
  7. [7]
    Rosenberg, J. M., GroupC *-algebras and topological invariants, inProc. Conf. on Operator Algebras and Group Representations (Neptun, Romania, 1980), Pitman, London, To appear.Google Scholar
  8. [8]
    —, Homological invariants of extensions ofC *-algebras.Proc. Sympos. Pure Math., vol. 38 Part I, Amer. Math. Soc., Providence (1982), 35–75.Google Scholar
  9. [9]
    —, The role ofK-theory in non-commutative algebraic topology.Contemp. Math. 10, Amer. Math. Soc., Providence (1982), 155–182.Google Scholar
  10. [10]
    Takesaki, M.,Theory of operator algebras I. Springer, Berlin, 1979.Google Scholar
  11. [11]
    Voiculescu, D., A non-commutative Weyl-von Neumann theorem.Rev. Roumaine Math. Pures Appl., 21 (1976), 97–113.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1983

Authors and Affiliations

  • E. Christopher Lance
    • 1
  1. 1.University of LeedsLeedsEngland

Personalised recommendations