Acta Mathematica

, Volume 168, Issue 1, pp 89–151 | Cite as

A variational method in image segmentation: Existence and approximation results

  • G. Dal Maso
  • J. M. Morel
  • S. Solimini


Variational Method Image Segmentation Minimum Point Concentration Property Atomization Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ambrosio, L., A compactness theorem for a new class of functions of bounded variation.Boll. Un. Mat. Ital. B (7), 3 (1989), 857–881.MathSciNetzbMATHGoogle Scholar
  2. [2]
    —, Variational problems in SBV and image segmentation.Acta Appl. Math., 17 (1989), 1–40.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Amini, A. A., Tehrani, S. &Weymouth, T. E., Using dynamic programming for minimizing the energy of active contours.Second International Conference on Computer Vision (Tampa, Florida, 1988), pp. 95–99. IEEE Computer Society Press, no. 883, Washington, 1988.Google Scholar
  4. [4]
    Besicovitch, A. S., A general form of the covering principle and relative differentiations of additive functions.Proc. Cambridge Philos. Soc. I, 41 (1945), 103–110.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Blat, J. & Morel, J. M., Elliptic problems in image segmentation and their relation to fracture theory.Proc. of the International Conference on Nonlinear Elliptic and Parabolic Problems (Nancy, 1988). To appear.Google Scholar
  6. [6]
    Brezis, H., Coron, J. M. &Lieb, E. H., Harmonic maps with defects.Comm. Math. Phys., 107 (1986), 679–705.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Carriero, M., Leaci, A., Pallara, D. & Pascali, E., Euler conditions for a minimum problem with free discontinuity surfaces. Preprint Univ. Lecce, Lecce, 1988.Google Scholar
  8. [8]
    De Giorgi, E., Free discontinuity problems in calculus of variations.Analyse Mathématique et Applications (Paris, 1988). Gauthier-Villars, Paris, 1988.Google Scholar
  9. [9]
    De Giorgi, E. & Ambrosio, L., Un nuovo tipo di funzionale del calcolo delle variazioni.Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (1988).Google Scholar
  10. [10]
    De Giorgi, E., Carriero, M. &Leaci, A., Existence theorem for a minimum proble with free discontinuity set.Arch. Rational Mech. Anal., 108 (1989), 195–218.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    De Giorgi, E. Colombini, F. & Piccinini, L. C., Frontiere orientate di misura minima e questioni collegate. Quaderno della Scuole Normale Superiore, Pisa, 1972.Google Scholar
  12. [12]
    Ericksen, J. L., Equilibrium theory of liquid crystals.Advances in Liquid Crystals, 233–299. Academic Press, New York, 1976.Google Scholar
  13. [13]
    Federer, H.,Geometric Measure Theory, Springer-Verlag, New York, 1969.zbMATHGoogle Scholar
  14. [14]
    —, Colloquium lectures on geometric measure theory.Bull. Amer. Math. Soc., 84 (1978), 291–338.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Geman, S. & Geman, D., Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images.IEEE PAMI, 6 (1984).Google Scholar
  16. [16]
    Giusti, E.,Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel, 1983.Google Scholar
  17. [17]
    Kass, M., Witkin, A. &Terzopoulos, D., Snakes: active contour models.First International conference on Computer Vision (London, 1987), pp. 259–268. IEEE Computer Society Press, no. 77, Washington, 1987.Google Scholar
  18. [18]
    Massari, U. &Miranda, M.,Miniman Surfaces of Codimension One. Notas de Matematica, North Holland, Amsterdam, 1984.Google Scholar
  19. [19]
    Morel, J. M. &Solimini, S., Segmentation of images by variational methods: a constructive approach.Revista Matematical Universidad Complutense de Madrid, 1 (1988), 169–182.MathSciNetzbMATHGoogle Scholar
  20. [20]
    —, Segmentation d’images par méthode variationnelle: une preuve constructive d’existence.C.R. Acad. Sci. Paris Sér I Math., 308 (1989), 465–470.MathSciNetzbMATHGoogle Scholar
  21. [21]
    Mumford, D. & Shah, J., Boundary detection by minimizing functionals, I.Proc. IEEE Conf. on Computer Vision and Patter Recognition (San Francisco, 1985) andImage Understanding, 1988.Google Scholar
  22. [22]
    —, Optimal approximation by piecewise smooth functions and associated variational problems.Comm. Pure Appl. Math., 42 (1989), 577–684.MathSciNetzbMATHGoogle Scholar
  23. [23]
    Richardson, T., Existence result for a variational problem arising in computer vision theory. Preprint CICS, P-63, MIT, 1988.Google Scholar
  24. [24]
    Rosenfeld, A. &Kak, A. C.,Digital Picture Processing. Academic Press, New York, 1982.Google Scholar
  25. [25]
    Simon, L., Lectures on geometric measure theory.Proc. of the Centre for Mathematical Analysis (Canberra, 1983). Australian National University, 3, 1983.Google Scholar
  26. [26]
    Virga, E., Forme di equilibrio di piccole gocce di cristallo liquido. Preprint IAN, Pavia, 1987.Google Scholar
  27. [27]
    Volpert, A. I. &Hudjaev, S. I.,Analysis in classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus Nijhoff Publishers. Dordrecht, 1985.Google Scholar
  28. [28]
    Yuille, A. L. &Grzywacz, N. M., The motion coherence theory.Second Internaional Conference of Computer Vision (Tampa, Florida, 1988), IEEE Computer Society Press, no. 883, Washington, 1988.Google Scholar

Copyright information

© Almqvist & Wiksell 1992

Authors and Affiliations

  • G. Dal Maso
    • 1
  • J. M. Morel
    • 2
  • S. Solimini
    • 1
  1. 1.S.I.S.S.A.TriesteItaly
  2. 2.CEREMADE University Paris-DauphineParisFrance

Personalised recommendations