Acta Mathematica

, Volume 168, Issue 1, pp 1–10 | Cite as

Behavior of the Bergman projection on the Diederich-Fornæss worm

  • David E. Barrett


Bergman Space Pseudoconvex Domain Bergman Kernel Global Regularity Weighted Bergman Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba1]Barrett, D., Irregularity of the Bergman projection on a smooth bounded domain in C2.Ann. of Math., 119 (1984), 431–436.MATHMathSciNetCrossRefGoogle Scholar
  2. [Ba2]—, Biholomorphic domains with inequivalent boundaries.Invent. Math., 86 (1986). 373–377.MathSciNetCrossRefGoogle Scholar
  3. [BF]Barrett, D. &Forness, J. E., Uniform approximation of holomorphic functions on bounded Hartogs domains in C2.Math. Z., 191 (1986), 61–72.MATHMathSciNetCrossRefGoogle Scholar
  4. [Be]Bell, S., Biholomorphic mappings and the\(\bar \partial \)-problem.Ann. of Math., 114 (1981), 103–113.MATHMathSciNetCrossRefGoogle Scholar
  5. [BL]Bell, S. &Ligocka, E., A simplication and extension of Fefferman’s theorems on biholomorphic mappings.Invet. Math., 57 (1980), 2383–289.MathSciNetGoogle Scholar
  6. [BSt1]Boas, H. & Straube, E., Sobolev estimates for the\(\bar \partial \)-Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary. Preprint.Google Scholar
  7. [BSt2]— Equivalence of regularity for the Bergman projection and the\(\bar \partial \)-Neumann operator.Manuscripta Math., 67 (1990) 25–33.MATHMathSciNetGoogle Scholar
  8. [BSt3]Boas, H., The Bergman projection on Hartogs domains in C2. Preprint.Google Scholar
  9. [Ca]Catlin, D., Global regularity of the\(\bar \partial \)-Neumann problem.Proc. Sympos. Pure Math., 41 (1984), 39–49.MATHMathSciNetGoogle Scholar
  10. [Ch]Chen, So-Chin, Global regularity of the\(\bar \partial \)-Neumann problem in dimension two. Preprint.Google Scholar
  11. [DF]Diederich, K. &Fornaess, J. E., Pseudoconvex domains: an example with nontrivial Nebenhulle.Math. Ann., 225 (1977), 275–292.MATHMathSciNetCrossRefGoogle Scholar
  12. [FK]Folland, G. & Kohn, J. J.,The Neumann Problem for the Cauchy-Riemann Complex. Ann of Math. Studies, no. 75. Princeton Univ. Press, 1972.Google Scholar
  13. [Ki]Kiselman, C., A study of the Bergman projection in certain Hartogs domains. Preprint.Google Scholar
  14. [Ko1]Kohn, J. J., Global regularity for\(\bar \partial \) on weakly pseudoconvex manifolds.Trans. Amer. Math. Soc., 181 (1973), 273–292.MATHMathSciNetCrossRefGoogle Scholar
  15. [Ko2]—, Subellipticity of the\(\bar \partial \)-Neumann problem on pseudoconvex domains: sufficient conditions.Acta Math., 142 (1979), 79–122.MATHMathSciNetCrossRefGoogle Scholar
  16. [Li]Ligocka, E., Estimates in Sobolev norms ∥·∥ps for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions.Studia Math., 86 (1987), 255–271.MATHMathSciNetGoogle Scholar
  17. [Si]Sibony, N., Une classe de domaines pseudoconvexes.Duke Math. J., 55 (1987), 299–319.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Almqvist & Wiksell 1992

Authors and Affiliations

  • David E. Barrett
    • 1
  1. 1.University of MichiganAnn ArborMIUSA

Personalised recommendations