Acta Mathematica

, Volume 150, Issue 1, pp 255–296 | Cite as

Normal forms for real surfaces in C2 near complex tangents and hyperbolic surface transformations

  • Jürgen K. Moser
  • Sidney M. Webster


Normal Form Formal Power Series Real Surface Real Hypersurface Hyperbolic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bedford, E. & Gaveau, B., Envelopes of holomorphy of certain 2-spheres in C2. To appear inAmer. J. Math., 105 (1983).Google Scholar
  2. [2]
    Birkhoff, G. D., The restricted problem of three bodies.Rend. Circ. Mat. Palermo, 39 (1915), 265–334. (In particular p. 310 and p. 329.)MATHCrossRefGoogle Scholar
  3. [3]
    —, Surface transformations and their dynamical applications.Acta Math., 43 (1920), 1–119. (In particular p. 7.)MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Bishop, E., Differentiable manifolds in complex Euclidean space.Duke Math. J., 32 (1965), 1–22.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Chern, S. S. &Moser, J. K., Real hypersurfaces in complex manifolds.Acta Math., 133 (1974), 219–271.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Freeman, M., Polynomial hull of a thin two-manifold.Pacific J. Math., 38 (1971), 377–389.MATHMathSciNetGoogle Scholar
  7. [7]
    Hunt, L. R., The local envelope of holomorphy of ann-manifold inC n.Bol. Un. Mat. Ital., 4 (1971), 12–35.MATHGoogle Scholar
  8. [8]
    Kenig, C. &Webster, S., The local hull of holomorphy of a surface in the space of two complex variables.Invent. Math., 67 (1982), 1–21.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Lewy, H., On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables.Ann. of Math., 64 (1956), 514–522.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Moser, J., On the integrability of area-preserving Cremona mappings near an elliptic fixed point.Boletin de la Sociedad Matematica Mexicana (2) 5 (1960), 176–180.Google Scholar
  11. [11]
    Siegel, C. L. & Moser, J. K.,Lectures on Celestial Mechanics. Springer, 1971. (In particular, p. 166ff.)Google Scholar
  12. [12]
    Siegel, C. L., Vereinfachter Beweis eines Satzes von J. Moser.Comm. Pure Appl. Math., 10 (1957), 305–309.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1983

Authors and Affiliations

  • Jürgen K. Moser
    • 1
  • Sidney M. Webster
    • 2
  1. 1.Forschungsinstitut für Mathematik ETHZürichSwitzerland
  2. 2.University of MinnesotaUSA

Personalised recommendations