Acta Mathematica

, Volume 191, Issue 2, pp 191–223 | Cite as

Teichmüller geodesics of infinite complexity

  • Curtis T. Mcmullen
Article

Keywords

Infinite Complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar]Arnoux, P., Échanges d’intervalles et flots sur les surfaces, inErgodic Theory (Les Plans-sur-Bex, 1980), pp. 5–38. Monograph. Enseign. Math., 29. Univ. Genève, Geneva, 1981.Google Scholar
  2. [Be]Bers, L., An extremal problem for quasiconformal maps and a theorem by Thurston.Acta Math., 141 (1978), 73–98.MATHMathSciNetGoogle Scholar
  3. [Bo]Boshernitzan, M. D., Rank two interval exchange transformations.Ergodic Theory Dynam. Systems, 8 (1988), 379–394.MATHMathSciNetCrossRefGoogle Scholar
  4. [Ca]Calta, K., Veech surfaces and complete periodicity in genus 2. Preprint, 2002.Google Scholar
  5. [CFS]Cornfeld, I. P., Fomin, S. V. &Sinaî, Ya. G.,Ergodic Theory. Grundlehren Math. Wiss., 245. Springer-Verlag, New York, 1982.MATHGoogle Scholar
  6. [EO]Eskin, A. &Okounkov, A., Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials.Invent. Math., 145 (2001), 59–103.CrossRefMathSciNetMATHGoogle Scholar
  7. [FLP]Fathi, A., Laudenbach, F. &Poénaru, V.,Travaux de Thurston sur les surfaces. Astérisque, 66–67. Soc. Math. France, Paris, 1979.Google Scholar
  8. [Ga]Gardiner, F. P.,Teichmüller Theory and Quadratic Differentials. Wiley, New York, 1987.MATHGoogle Scholar
  9. [GJ]Gutkin, E. &Judge, C., Affine mappings of translation surfaces: geometry and arithmetic.Duke Math. J., 103 (2000), 191–213.CrossRefMathSciNetMATHGoogle Scholar
  10. [HW]Hardy, G. H. &Wright, E. M.,An Introduction to the Theory of Numbers, 5th edition. Oxford Univ. Press, New York, 1979.MATHGoogle Scholar
  11. [HM]Hubbard, J. &Masur, H., Quadratic differentials and foliations.Acta Math., 142 (1979), 221–274.MathSciNetMATHGoogle Scholar
  12. [HS]Hubert, P. & Schmidt, T. A., Infinitely generated Veech groups. Preprint, 2002.Google Scholar
  13. [Ke]Keane, M., Interval exchange transformations.Math. Z., 141 (1975), 25–31.CrossRefMATHMathSciNetGoogle Scholar
  14. [KS]Kenyon, R. &Smillie, J., Billiards on rational-angled triangles.Comment. Math. Helv., 75 (2000), 65–108.CrossRefMathSciNetMATHGoogle Scholar
  15. [Ko]Kontsevich, M., Lyapunov exponents and Hodge theory, inThe Mathematical Beauty of Physics (Saclay, 1996), pp. 318–332. Adv. Ser. Math. Phys., 24. World Sci. Publishing, River Edge, NJ, 1997.Google Scholar
  16. [Le]Leutbecher, A., Über die Heckeschen GruppenG(λ), II.Math. Ann., 211 (1974), 63–86.CrossRefMATHMathSciNetGoogle Scholar
  17. [Mc]McMullen, C. T., Billiards and Teichmüller curves on Hilbert modular surfaces.J. Amer. Math. Soc., 16 (2003), 857–885.CrossRefMATHMathSciNetGoogle Scholar
  18. [Man]Mañé, R.,Ergodic Theory and Differentiable Dynamics. Ergeb. Math. Grenzgeb. (3), 8. Springer-Verlag, Berlin, 1987.MATHGoogle Scholar
  19. [Mas1]Masur, H., Transitivity properties of the horocyclic and geodesic flows on moduli space.J. Analyse Math., 39 (1981), 1–10.MATHMathSciNetCrossRefGoogle Scholar
  20. [Mas2]—, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential.Duke Math. J., 66 (1992), 387–442.CrossRefMATHMathSciNetGoogle Scholar
  21. [MT]Masur, H. &Tabachnikov, S., Rational billiards and flat structures, inHandbook of Dynamical Systems, Vol. 1A, pp. 1015–1089. North-Holland, Amsterdam, 2002.Google Scholar
  22. [Mu]Mumford, D., A remark on Mahler’s compactness theorem.Proc. Amer. Math. Soc., 28 (1971), 289–294.CrossRefMATHMathSciNetGoogle Scholar
  23. [Se]Seibold, F., Zahlentheoretische Eigenschaften der Heckeschen GruppenG(λ) und verwandter Transformationsgruppen. Dissertation, Technischen Universität München, 1985.Google Scholar
  24. [St]Strebel, K.,Quadratic Differentials. Ergeb. Math. Grenzgeb. (3), 5. Springer-Verlag, Berlin, 1984.MATHGoogle Scholar
  25. [Th]Thurston, W. P., On the geometry and dynamics of diffeomorphisms of surfaces.Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417–431.MATHMathSciNetGoogle Scholar
  26. [V1]Veech, W. A., The metric theory of interval exchange transformations, III. The Sah-Arnoux-Fathi invariant.Amer. J. Math., 106 (1984), 1389–1422.MATHMathSciNetGoogle Scholar
  27. [V2]—, The Teichmüller geodesic flow.Ann. of Math. (2), 124 (1986), 441–530.CrossRefMATHMathSciNetGoogle Scholar
  28. [V3]—, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards.Invent. Math., 97 (1989), 553–583.CrossRefMATHMathSciNetGoogle Scholar
  29. [V4]—, The billiard in a regular polygon.Geom. Funct. Anal., 2 (1992), 341–379.CrossRefMATHMathSciNetGoogle Scholar
  30. [Vo]Vorobets, Ya. B., Plane structures and billiards in rational polygons: the Veech alternative.Uspekhi Mat. Nauk, 51:5 (311) (1996), 3–42 (Russian); English translation inRussian Math. Surveys, 51 (1996), 779–817.MATHMathSciNetGoogle Scholar
  31. [Wa]Ward, C. C., Calculation of Fuchsian groups associated to billiards in a rational triangle.Ergodic Theory Dynam. Systems, 18 (1998), 1019–1042.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2003

Authors and Affiliations

  • Curtis T. Mcmullen
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations