Acta Mathematica

, 183:273 | Cite as

Algebraicity of local holomorphisms between real-algebraic submanifolds of complex spaces

  • Dmitri Zaitsev


Complex Space Local Holomorphisms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [BER1]Baouendi, M. S., Ebenfelt, P. &Rothschild, L. P., Algebraicity of holomorphic mappings between real algebraic sets inC n.Acta Math., 177 (1996), 225–273.MathSciNetMATHGoogle Scholar
  2. [BER2]—, CR automorphisms of real analytic manifolds in complex space.Comm. Anal. Geom., 6 (1998), 291–315.MathSciNetMATHGoogle Scholar
  3. [BER3]—, Parametrization of local biholomorphisms of real analytic hypersurfaces.Asian J. Math., 1 (1997), 1–16.MathSciNetMATHGoogle Scholar
  4. [BER4]—,Real Submanifolds in Complex Space and Their Mappings. Princeton Math. Ser., 47. Princeton Univ. Press, Princeton, NJ, 1999.MATHGoogle Scholar
  5. [BER5]—, Rational dependence of smooth and analytic CR mappings on their jets.Math. Ann., 315 (1999), 205–249.CrossRefMathSciNetMATHGoogle Scholar
  6. [BeRi]Benedetti, R. &Risler, J.-J.,Real Algebraic and Semi-Algebraic Sets. Actualités Mathématiques. Hermann, Paris 1990.MATHGoogle Scholar
  7. [BHR]Baouendi, M. S., Huang, X. &Rothschild, L. P., Regularity of CR mappings between algebraic hypersurfaces.Invent. Math., 125 (1996), 13–36.CrossRefMathSciNetMATHGoogle Scholar
  8. [BJT]Baouendi, M. S., Jacobowitz, H. &Trèves, F., On the analyticity of CR mappings.Ann. of Math., 122 (1985), 365–400.CrossRefMathSciNetGoogle Scholar
  9. [BlGr]Bloom, T. &Graham, I., On type conditions for generic real submanifolds ofC n.Invent. Math., 40 (1977), 217–243.CrossRefMathSciNetGoogle Scholar
  10. [Bo]Boggess, A.,CR Manifolds and the Tangential Cauchy-Riemann Complex, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1991.MATHGoogle Scholar
  11. [BR1]Baouendi, M. S. &Rothschild, L. P., Mappings of real algebraic hypersurfaces.J. Amer. Math. Soc., 8 (1995), 997–1015.CrossRefMathSciNetMATHGoogle Scholar
  12. [BR2]—, Germs of CR maps between real analytic hypersurfaces.Invent. Math., 93 (1988), 481–500.CrossRefMathSciNetMATHGoogle Scholar
  13. [CMS]Coupet, B., Meylan, F. & Sukhov, A., Holomorphic maps of algebraic CR manifolds.Internat. Math. Res. Notices, 1999, 1–27.Google Scholar
  14. [D]D'Angelo, J. P., Real hypersurfaces, orders of contact, and applications.Ann. of Math., 115 (1982), 615–637.CrossRefMATHMathSciNetGoogle Scholar
  15. [DF1]Diederich, K. &Fornæss, J. E., Pseudoconvex domains with real-analytic boundaries.Ann. of Math., 107 (1978), 371–384.CrossRefGoogle Scholar
  16. [DF2]—, Proper holomorphic mappings between real analytic pseudoconvex domains.Math. Ann., 282 (1988), 681–700.CrossRefMathSciNetMATHGoogle Scholar
  17. [DP1]Diederich, K. &Pinchuk, S., Proper holomorphic maps in dimension 2 extend.Indiana Univ. Math. J., 44 (1995), 1089–1126.CrossRefMathSciNetMATHGoogle Scholar
  18. [DP2]Diederich, K. & Pinchuk, S., Reflection principle in higher dimensions, inProceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math., 1998, Extra Vol. II, pp. 703–712 (electronic).Google Scholar
  19. [DW]Diederich, K. &Webster, S., A reflection principle for degenerate real hypersurfaces.Duke Math. J., 47 (1980), 835–843.CrossRefMathSciNetMATHGoogle Scholar
  20. [Fa]Faran, J., A reflection principle for proper holomorphic mappings and geometric invariants.Math. Z., 203 (1990), 363–377.MATHMathSciNetGoogle Scholar
  21. [Fo1]Forstnerič, F., Extending proper holomorphic mappings of positive codimension.Invent. Math., 95 (1989), 31–62.CrossRefMathSciNetMATHGoogle Scholar
  22. [Fo2]Forstnerič, F., Mappings of quadric Cauchy-Riemann manifolds.Math. Ann., 292 (1992), 163–180.CrossRefMathSciNetMATHGoogle Scholar
  23. [G]Gunning, R. C.,Introduction to Holomorphic Functions of Several Variables (three volumes). Wadsworth & Brooks/Cole Math. Ser. Wadsworth & Brooks/Cole Adv. Books Software, Monterey, CA, 1990.Google Scholar
  24. [H1]Huang, X., On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions.Ann. Inst. Fourier (Grenoble), 44 (1994), 433–463.MATHMathSciNetGoogle Scholar
  25. [H2]—, Geometric analysis in several complex variables. PhD thesis, Washington University, St Louis, MO, 1994.Google Scholar
  26. [H3]—, Schwarz reflection principle in complex spaces of dimension two.Comm. Partial Differential Equations 21 (1996), 1781–1828.MATHMathSciNetGoogle Scholar
  27. [HJ]Huang, X. &Ji, S., Global holomorphic extension of a local map and a Riemann mapping theorem for algebraic domains.Math. Res. Lett., 5 (1998), 247–260.MathSciNetMATHGoogle Scholar
  28. [HZ]Huckleberry, A. &Zaitsev, D., Actions of groups of birationally extendible automorphisms, inGeometric Complex Analysis (Hayama, 1995), pp. 261–285. World Sci. Publishing, River Edge, NJ, 1996.Google Scholar
  29. [K]Kohn, J. J., Boundary behavior of\(\bar \partial \) on weakly pseudo-convex manifolds of dimension two.J. Differential Geom., 6 (1972), 523–542.MATHMathSciNetGoogle Scholar
  30. [L1]Lewy, H., On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables.Ann. of Math., 64 (1956), 514–522.CrossRefMATHMathSciNetGoogle Scholar
  31. [L2]—, On the boundary behaviour of holomorphic mappings. Contrib. Centro Linceo Inter. Sc. Mat. e Loro Appl., 35, pp. 1–8. Accad. Naz. dei Lincei, Rome, 1977.Google Scholar
  32. [Me]Meylan, F., The reflection principle in complex space.Indiana Univ. Math. J., 44 (1995), 783–796.CrossRefMATHMathSciNetGoogle Scholar
  33. [Mi]Mir, N., Germs of holomorphic mappings between real algebraic hypersurfaces.Ann. Inst. Fourier (Grenoble), 48 (1998), 1025–1043.MATHMathSciNetGoogle Scholar
  34. [Mu]Mumford, D.,The Red Book of Varieties and Schemes. Lecture Notes in Math., 1358. Springer-Verlag, Berlin-New York, 1988.MATHGoogle Scholar
  35. [Pi]Pinchuk, S., On the analytic continuation of holomorphic mappings.Math. USSR-Sb., 27 (1975), 345–392.Google Scholar
  36. [Po]Poincaré, H., Les fonctions analytiques de deux variables et la représentation conforme.Rend. Circ. Mat. Palermo, 23 (1907), 185–220.MATHCrossRefGoogle Scholar
  37. [Se]Segre, B., Intorno al problema di Poincaré della rappresentazione pseudoconforme.Atti R. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (6), 13 (1931), 676–683.MATHMathSciNetGoogle Scholar
  38. [SS]Sharipov, R. &Sukhov, A., On CR-mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions.Trans. Amer. Math. Soc., 348 (1996), 767–780.CrossRefMathSciNetMATHGoogle Scholar
  39. [Su1]Sukhov, A., Holomorphic mappings of wedge-type domains.Math. Notes, 52 (1992), 979–982.CrossRefMATHMathSciNetGoogle Scholar
  40. [Su2]—, On algebraicity of complex analytic sets.Math. USSR-Sb., 74 (1993), 419–426.CrossRefMathSciNetGoogle Scholar
  41. [Su3]—, On the mapping problem for quadric Cauchy-Riemann manifolds.Indiana Univ. Math. J., 42 (1993), 27–36.CrossRefMATHMathSciNetGoogle Scholar
  42. [Su4]—, On CR mappings of real quadric manifolds.Michigan Math. J., 41 (1994), 143–150.CrossRefMATHMathSciNetGoogle Scholar
  43. [Ta]Tanaka, N., On the pseudo-conformal geometry of hypersurfaces of the space ofn complex variables.J. Math. Soc. Japan, 14 (1962), 397–429.MATHMathSciNetCrossRefGoogle Scholar
  44. [TH]Tumanov, A. &Henkin, G., Local characterization of holomorphic automorphisms of Siegel domains.Functional Anal. Appl., 17 (1983), 49–61.MathSciNetGoogle Scholar
  45. [Tu1]Tumanov, A., Extension of CR-functions into a wedge from a manifold of finite type.Math. USSR-Sb., 64 (1989), 129–140.CrossRefMATHMathSciNetGoogle Scholar
  46. [Tu2]—, Finite-dimensionality of the group of CR-automorphisms of standard CR-manifolds and characteristic holomorphic mappings of Siegel domains.Math. USSR-Izv., 32 (1989), 655–662.CrossRefMATHMathSciNetGoogle Scholar
  47. [W1]Webster, S., On the mapping problem for algebraic real hypersurfaces.Invent. Math., 43 (1977), 53–68.CrossRefMATHMathSciNetGoogle Scholar
  48. [W2]— On the reflection principle in several complex variables.Proc. Amer. Math. Soc., 71 (1978), 26–28.CrossRefMATHMathSciNetGoogle Scholar
  49. [Z1]Zaitsev, D., On the automorphism groups of algebraic bounded domains.Math. Ann., 302 (1995), 105–129.CrossRefMATHMathSciNetGoogle Scholar
  50. [Z2]—, Germs of local automorphisms of real-analytic CR structures and analytic dependence onk-jets.Math. Res. Lett., 4 (1997), 823–842.MATHMathSciNetGoogle Scholar
  51. [Z3]—, Domains of polyhedral type and boundary extensions of biholomorphisms.Indiana Univ. Math. J., 47 (1998), 1511–1526.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1999

Authors and Affiliations

  • Dmitri Zaitsev
    • 1
  1. 1.Mathematisches InstitutEberhard-Karls-Universität TübingenTübingenGermany

Personalised recommendations