Acta Mathematica

, Volume 116, Issue 1, pp 279–309 | Cite as

Special functions on locally compact fields

  • P. J. SallyJr.
  • M. H. Taibleson
Article

Keywords

Special Function Compact Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Bourbaki, N.,Algèbre commutative, Ch. 5 and 6 Hermann, Paris, 1964.MATHGoogle Scholar
  2. [2].
    Bruhat, F., Sur les répresentations des groupes classiques\(\mathfrak{p}\)-adiques I, II.Amer. J. Math., 83 (1961), 321–338, 343–368.MATHMathSciNetGoogle Scholar
  3. [3].
    Gelfand, I. M. &Graev, M. T., Representations of a group of the second order with elements from a locally compact field, and special functions on locally compact fields.Uspehi Mat. Nauk, Russian Math. Surveys, 18 (1963), 29–100.CrossRefMathSciNetGoogle Scholar
  4. [4].
    Lang, S.,Algebraic numbers. Addison-Wesley, Reading, Mass., 1964.MATHGoogle Scholar
  5. [5].
    Mautner, F. I., Spherical functions over\(\mathfrak{p}\)-adic fields I, II.Amer. J. Math., 80 (1958), 441–457; 86 (1964), 171–200.MATHMathSciNetGoogle Scholar
  6. [6].
    Saito, M., Representations unitaires du groupe des déplacements du plan\(\mathfrak{p}\)-adic feilds.Proc. Japan Acad., 39 (1963), 407–409.MATHMathSciNetCrossRefGoogle Scholar
  7. [7].
    Satake, I., Theory of spherical functions on reductive algebraic groups over\(\mathfrak{p}\) fields.Inst. Hautes Études Sci. Publ. Math., 18 (1964), 229–293.Google Scholar
  8. [8].
    Zygmund, A.,Trigonometric series, 2nd edition, vols. I, II. Cambridge, 1959.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1966

Authors and Affiliations

  • P. J. SallyJr.
    • 1
  • M. H. Taibleson
    • 1
  1. 1.Washington UniversitySt. LouisUSA

Personalised recommendations