Acta Mathematica

, Volume 116, Issue 1, pp 279–309 | Cite as

Special functions on locally compact fields

  • P. J. SallyJr.
  • M. H. Taibleson


Special Function Compact Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Bourbaki, N.,Algèbre commutative, Ch. 5 and 6 Hermann, Paris, 1964.MATHGoogle Scholar
  2. [2].
    Bruhat, F., Sur les répresentations des groupes classiques\(\mathfrak{p}\)-adiques I, II.Amer. J. Math., 83 (1961), 321–338, 343–368.MATHMathSciNetGoogle Scholar
  3. [3].
    Gelfand, I. M. &Graev, M. T., Representations of a group of the second order with elements from a locally compact field, and special functions on locally compact fields.Uspehi Mat. Nauk, Russian Math. Surveys, 18 (1963), 29–100.CrossRefMathSciNetGoogle Scholar
  4. [4].
    Lang, S.,Algebraic numbers. Addison-Wesley, Reading, Mass., 1964.MATHGoogle Scholar
  5. [5].
    Mautner, F. I., Spherical functions over\(\mathfrak{p}\)-adic fields I, II.Amer. J. Math., 80 (1958), 441–457; 86 (1964), 171–200.MATHMathSciNetGoogle Scholar
  6. [6].
    Saito, M., Representations unitaires du groupe des déplacements du plan\(\mathfrak{p}\)-adic feilds.Proc. Japan Acad., 39 (1963), 407–409.MATHMathSciNetCrossRefGoogle Scholar
  7. [7].
    Satake, I., Theory of spherical functions on reductive algebraic groups over\(\mathfrak{p}\) fields.Inst. Hautes Études Sci. Publ. Math., 18 (1964), 229–293.Google Scholar
  8. [8].
    Zygmund, A.,Trigonometric series, 2nd edition, vols. I, II. Cambridge, 1959.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1966

Authors and Affiliations

  • P. J. SallyJr.
    • 1
  • M. H. Taibleson
    • 1
  1. 1.Washington UniversitySt. LouisUSA

Personalised recommendations