Acta Mathematica

, Volume 174, Issue 1, pp 85–118 | Cite as

On the order of prime powers dividing ( n 2n )

  • Jürgen W. Sander


Prime Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baker, R. C.,Diophantine Inequalities. Clarendon Press, Oxford, 1986.MATHGoogle Scholar
  2. [2]
    Davenport, H.,Multiplicative Number Theory, 2nd edition (revised by Hugh L. Montgomery). Springer-Verlag, New York-Berlin, 1980.MATHGoogle Scholar
  3. [3]
    Erdős, P., Problems and results on number theoretic properties of consecutive integers and related questions, inProceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975), pp. 25–44. Congressus Numerantium, No. XVI, Utilitas Math., Winnipeg, Man., 1976.Google Scholar
  4. [4]
    Erdős, P. &Graham, R. L., On the prime factors of (kn).Fibonacci Quart., 14 (1976), 348–352.MathSciNetGoogle Scholar
  5. [5]
    Erdős, P. & Graham, R.L.,Old and New Problems and Results in Combinatorial Number Theory. Monograph. Enseign. Math., 28. Enseignement Math., Geneva, 1980.Google Scholar
  6. [6]
    Guy, R. K.,Unsolved Problems in Number Theory, Springer-Verlag, New York-Berlin, 1981.MATHGoogle Scholar
  7. [7]
    Hua, L. K.,Additive Theory of Prime Numbers. Amer. Math. Soc., Providence, R.I., 1965.MATHGoogle Scholar
  8. [8]
    Karacuba, A. A., Estimates for trigonometric sums by Vinogradov's method, and some applications.Proc. Steklov Inst. Math., 112 (1971), 251–265.Google Scholar
  9. [9]
    Kummer, E. E., Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen.J. Reine Angew. Math., 44 (1852), 93–146.MATHGoogle Scholar
  10. [10]
    Prachar, K.,Primzahlverteilung. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.MATHGoogle Scholar
  11. [11]
    Sander, J. W., Prime power divisors of binomial coefficients.J. Reine Angew. Math., 430 (1992), 1–20.MATHMathSciNetGoogle Scholar
  12. [12]
    —, An asymptotic formula fora-th powers dividing binomial coefficients.Mathematika, 39 (1992), 25–36.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Sárközy, A., On divisors of binomial coefficients, I.J. Number Theory, 20 (1985), 70–80.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    Titchmarsh, E. C.,The Theory of the Riemann Zeta-function, 2nd edition (revised by D. R. Heath-Brown). Clarendon Press, Oxford, 1986.MATHGoogle Scholar
  15. [15]
    Vaughan, R. C., Sommes trigonométriques sur les nombres premiers.C. R. Acad. Sci. Paris Sér. A-B, 285 (1977), 981–983.MATHMathSciNetGoogle Scholar
  16. [16]
    Vinogradov, I. M.,The Method of Trigonometrical Sums in the Theory of Numbers. Interscience Publishers, London-New York, 1954.MATHGoogle Scholar
  17. [17]
    —,Selected works. Izdat. Akad. Nauk SSSR, Moscow, 1952 (Russian).Google Scholar

Copyright information

© Almqvist & Wiksell 1995

Authors and Affiliations

  • Jürgen W. Sander
    • 1
  1. 1.Institut für MathematikUniversität HannoverHannoverGermany

Personalised recommendations