Advertisement

Acta Mathematica

, Volume 188, Issue 1, pp 41–86 | Cite as

Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential

  • Jean Bourgain
  • Michael Goldstein
  • Wilhelm Schlag
Article

Keywords

Anderson Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aizenman, M. &Molchanov, S., Localization at large disorder and at extreme energies: an elementary derivation.Comm. Math. Phys., 157 (1993), 245–278.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Anderson, P., Absence of diffusion in certain random lattices.Phys. Rev. (2), 109 (1958), 1492–1501.CrossRefGoogle Scholar
  3. [3]
    Basu, S., On bounding the Betti numbers and computing the Euler characteristic of semialgebraic sets.Discrete Comput. Geom., 22 (1999), 1–18.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    —, New results on quantifier elimination over real closed fields and applications to constraint databases.J. ACM, 46 (1999), 537–555.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    Basu, S., Pollack, R. &Roy, M.-F., On the combinatorial and algebraic complexity of quantifier elimination.J. ACM, 43 (1996), 1002–1045.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Bochnak, J., Coste, M. &Roy, M.-F.,Real Algebraic Geometry. Ergeb. Math. Grenzgeb. (3), 36. Springer-Verlag, Berlin, 1998.Google Scholar
  7. [7]
    Bourgain, J. &Goldstein, M., On nonperturbative localization with quasi-periodic potential.Ann. of Math. (2), 152 (2000), 835–879.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Bourgain, J., Goldstein, M. &Schlag, W., Anderson localization for Schrödinger operators onZ with potentials given by the skew-shift.Comm. Math. Phys., 220 (2001), 583–621.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Bourgain, J. &Jitomirskaya, S., Anderson localization for the band model, inGeometric Aspects of Functional Analysis, pp. 67–79. Lecture Notes in Math., 1745. Springer-Verlag, Berlin, 2000.Google Scholar
  10. [10]
    Bourgain, J. &Schlag, W., Anderson localization for Schrödinger operators onZ with strongly mixing potentials.Comm. Math. Phys., 215 (2000), 143–175.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Carmona, R. &Lacroix, J.,Spectral Theory of Random Schrödinger Operators. Probability and its Applications. Birkhäuser, Boston, Boston, MA, 1990.Google Scholar
  12. [12]
    Delyon, F., Lévy, Y. &Souillard, B., Anderson localization for multidimensional systems at large disorder or large energy.Comm. Math. Phys., 100 (1985), 463–470.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Eliasson, L. H., Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum.Acta Math., 179 (1997), 153–196.MATHMathSciNetGoogle Scholar
  14. [14]
    Eliasson, L. H. Lecture at the Institute for Advanced Study, Princeton, NJ, 2000.Google Scholar
  15. [15]
    Figotin, A. &Pastur, L.,Spectra of Random and Almost-Periodic Operators. Grundlehren Math. Wiss., 297. Springer-Verlag, Berlin, 1992.Google Scholar
  16. [16]
    Fröhlich, J., Martinelli, F., Scoppola, E. &Spencer, T., Constructive proof of localization in the Anderson tight binding model.Comm. Math. Phys., 101 (1985), 21–46.CrossRefMathSciNetGoogle Scholar
  17. [17]
    Fröhlich, J. &Spencer, T., Absence of diffusion in the Anderson tight binding model for large disorder or low energy.Comm. Math. Phys., 88 (1983), 151–184.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Fröhlich, J., Spencer, T. &Wittwer, P., Localization for a class of one dimensional quasi-periodic Schrödinger operators.Comm. Math. Phys., 132 (1990), 5–25.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Goldstein, M. &Schlag, W., Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions.Ann. of Math. (2), 154 (2001), 155–203.MathSciNetGoogle Scholar
  20. [20]
    Gromov, M., Entropy, homology and semialgebraic geometry, inSéminaire Bourbaki, vol. 1985/86, exp. no 663.Astérisque, 145–146 (1987), 5, 225–240.Google Scholar
  21. [21]
    Levin, B. Ya.,Lectures on Entire Functions. Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996.Google Scholar
  22. [22]
    Shnol, E. E., On the behavior of eigenfunctions of the Schrödinger equation.Mat. Sb. (N.S.), 42 (84) (1957), 273–286 (Russian).Google Scholar
  23. [23]
    Simon, B., Spectrum and continuum eigenfunctions of Schrödinger operators.J. Funct. Anal., 42 (1981), 347–355.CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    Simon, B., Taylor, M. &Wolff, T., Some rigorous results for the Anderson model.Phys. Rev. Lett., 54 (1985), 1589–1592.CrossRefMathSciNetGoogle Scholar
  25. [25]
    Sinai, Ya. G., Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential.J. Statist. Phys., 46 (1987), 861–909.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Yomdin, Y.,C k-resolution of semi-algebraic mappings.Israel J. Math., 57 (1987), 301–317.MATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2002

Authors and Affiliations

  • Jean Bourgain
    • 1
  • Michael Goldstein
    • 1
    • 2
  • Wilhelm Schlag
    • 3
  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada
  3. 3.Division of Astronomy, Mathematics, and PhysicsPasadenaUSA

Personalised recommendations