Acta Mathematica

, Volume 170, Issue 2, pp 275–307 | Cite as

Precise damping conditions for global asymptotic stability for nonlinear second order systems

  • Patrizia Pucci
  • James Serrin


Asymptotic Stability Order System Global Asymptotic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Artstein, Z. &Infante, E. F., On the asymptotic stability oscillators with unbounded damping.Quart. Appl. Math., 34 (1976), 195–199.MathSciNetGoogle Scholar
  2. [2]
    Ballieu, R. J. &Peiffer, K., Attractivity of the origin for the equation\(\ddot x + f\left( {t,x,\dot x} \right)\left| {\dot x} \right|^\alpha \dot x + g\left( x \right) = 0\) J. Math. Anal. Appl., 65 (1978), 321–332.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Burton, T. A., On the equationu″+f(x)h(u′)u′+g(u)=e(t).Ann. Mat. Pura Appl., 85 (1970), 227–285.MathSciNetGoogle Scholar
  4. [4]
    Leoni, G., Manfredini, M. &Pucci, P., Stability properties for solutions of general Euler-Lagrange systems.Differential Integral Equations, 5 (1992), 537–552.MathSciNetGoogle Scholar
  5. [5]
    Levin, J. J. &Nohel, J. A., Global asymptotic stability for nonlinear systems of differential equations and applications to reactor dynamics.Archive Rational Mech. Anal. 5 (1960), 194–211.MathSciNetGoogle Scholar
  6. [6]
    Nakao, M., Asymptotic stability for some nonlinear evolution equations of second order with unbounded dissipative terms.J. Differential Equations, 30 (1978), 54–63.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    Pucci, P. &Serrin, J., A general variational identity.Indiana Univ. Math. J., 35 (1986) 681–703.CrossRefMathSciNetGoogle Scholar
  8. [8]
    —, Continuation and limit properties for solutions of strongly nonlinear second order differential equations.Asymptotic Anal., 4 (1991), 97–160.MathSciNetGoogle Scholar
  9. [9]
    —, Global asymptotic stability for strongly nonlinear second order systems, inProc. Conf. on Nonlinear Diffusion Equations and Their Equilibrium States (N. G. Lloyd, W.-M. Ni, L. A. Peletier and J. Serrin, eds.), pp. 437–449. Birkhäuser, Boston-Basel-Berlin, 1992.Google Scholar
  10. [10]
    Pucci, P. & Serrin, J., Continuation and limit behavior for damped quasi-variational systems, inProc. Conf. on Degenerate Diffusions, 1992 (W.-M. Ni, L. A. Peletier and J. L. Vazquez, eds.). The IMA Volumes and its Applications, 47. To appear.Google Scholar
  11. [11]
    Salvadori, L., Famiglie ad un parametro di funzioni di Liapunov nello studio della stabilità.Symposia Math., 6 (1971), 309–330. Istituto Nazionale di Alta Matematica, Roma.MATHMathSciNetGoogle Scholar
  12. [12]
    Smith, R. A., Asymptotic stability ofx″+a(t)x′+x=0.Quart. J. Math. Oxford, 12 (1961), 123–126.MATHGoogle Scholar
  13. [13]
    Thurston, L. H. &Wong, J. S. W., On global asymptotic stability of certain second order differential equations with integrable forcing terms.SIAM J. Appl. Math., 24 (1973), 50–61.CrossRefMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1993

Authors and Affiliations

  • Patrizia Pucci
    • 1
  • James Serrin
    • 2
  1. 1.Dipartimento di MatematicaUniversità di PerugiaperugiaItaly
  2. 2.Department of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations