Acta Mathematica

, Volume 170, Issue 2, pp 151–180 | Cite as

Multiplicities of algebraic linear recurrences

  • Hans Peter Schlickewei
Article

Keywords

Linear Recurrence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beukers, F. &Tijdeman, R., On the multiplicities of binary complex recurrences.Compositio Math., 51 (1984), 193–213.MathSciNetGoogle Scholar
  2. [2]
    Dobrowolski, E., On a question of Lehmer and the number of irreducible factors of a polynomial.Acta Arith., 34 (1979), 391–401.MATHMathSciNetGoogle Scholar
  3. [3]
    Evertse, J.H., On sums ofS-units and linear recurrences.Compositio Math., 53 (1984), 225–244.MATHMathSciNetGoogle Scholar
  4. [4]
    Evertse, J.H., Györy, K., Stewart, C.L. &Tijdeman, R.,S-unit equations in two variables.Invent. Math., 92 (1988), 461–477.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Evertse, J.H., Györy, K., Stewart, C.L. & Tijdeman, R. S-unit equations and their applications, inNew Advances in Transcendence Theory, (A. Baker, ed.), pp. 110–174. Cambridge University Press, 1988.Google Scholar
  6. [6]
    Kubota, K.K., On a conjecture by Morgan Ward III.Acta Arith., 33 (1977), 99–109.MATHMathSciNetGoogle Scholar
  7. [7]
    Schlickewei, H.P., An upper bound for the number of subspaces occurring in thep-adic subspace theorem in diophantine approximation.J. Reine Angew. Math., 406 (1990), 44–108.MATHMathSciNetGoogle Scholar
  8. [8]
    —, The quantitative subspace theorem for number fields.Compositio Math., 82 (1992), 245–273.MATHMathSciNetGoogle Scholar
  9. [9]
    —, An explicit upper bound for the number of solutions of theS-unit equation.J. Reine Angew. Math., 406 (1990), 109–120.MATHMathSciNetGoogle Scholar
  10. [10]
    S-unit equations over number fields.Invent. Math., 102 (1990), 95–107.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Schmidt, W. M., The subspace theorem in diophantine approximations.Compositio Math., 69 (1989), 121–173.MATHMathSciNetGoogle Scholar
  12. [12]
    Schmidt, W. M. Diophantine Approximations and Diophantine Equations. Lecture Notes in Math., 1467. Springer-Verlag, 1991.Google Scholar
  13. [13]
    Shorey, T. N. & Tijdeman, R.,Exponential Diophantine Equations. Cambridge University Press, 1986.Google Scholar

Copyright information

© Almqvist & Wiksell 1993

Authors and Affiliations

  • Hans Peter Schlickewei
    • 1
  1. 1.Abteilung Mathematik Oberer EselsbergUniversität UlmUlmGermany

Personalised recommendations