Acta Mathematica

, Volume 184, Issue 1, pp 1–39 | Cite as

Mirror symmetry and toric degenerations of partial flag manifolds

  • Victor V. Batyrev
  • Ionuţ Ciocan-Fontanine
  • Bumsig Kim
  • Duco van Straten


Manifold Mirror Symmetry Flag Manifold Toric Degeneration Partial Flag Manifold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Astashkevich, A. &Sadov, V., Quantum cohomology of partial flag manifoldsF n1,...,n k.Comm. Math. Phys., 170 (1995), 503–528.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Batyrev, V. V., On classifications of smooth projective toric varieties.Tôhoku Math. J., 43 (1991), 569–585.MATHMathSciNetGoogle Scholar
  3. [3]
    —, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties.J. Algebraic Geom., 3 (1994), 493–535.MATHMathSciNetGoogle Scholar
  4. [4]
    Batyrev, V. V. Toric degenerations of Fano varieties and constructing mirror manifolds.alg-geom/9712034.Google Scholar
  5. [5]
    Batyrev, V. V. &Borisov, L. A., Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, inMirror Symmetry, Vol. II, pp. 71–86. AMS/IP Stud. Adv. Math., 1. Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  6. [6]
    Batyrev, V. V., Ciocan-Fontanine, I., Kim, B. &Straten, D. van, Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians.Nuclear Phys. B, 514 (1998), 640–666, (alg-geom/9710022).CrossRefMathSciNetGoogle Scholar
  7. [7]
    Batyrev, V. V. &Straten, D. van, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties.Comm. Math. Phys., 168 (1995), 493–533 (alg-geom/9307010).CrossRefMathSciNetGoogle Scholar
  8. [8]
    Behrend, K., Gromov-Witten invariants in algebraic geometry.Invent. Math., 127 (1997), 601–617.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Borisov, L. A., Towards mirror symmetry of Calabi-Yau complete intersections in Gorenstein toric Fano varieties.alg-geom/9310001.Google Scholar
  10. [10]
    Candelas, P., Ossa, X. de la, Green, P. &Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory.Nuclear Phys. B, 359, (1991), 21–74.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Ciocan-Fontanine, I., On quantum cohomology rings of partial flag varieties.Duke Math. J., 98 (1999), 485–524.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    Eguchi, T., Hori, K. &Xiong, C.-S., Gravitational quantum cohomology.Internat. J. Modern Phys. A, 12 (1997), 1743–1782 (hep-th/9605225).CrossRefMathSciNetGoogle Scholar
  13. [13]
    Ehresmann, C., Sur la topologie des certaines espaces homogènes.Ann. of Math., 35 (1934), 396–443.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    Fulton, W.,Introduction to Toric Varieties. Ann. of Math. Stud., 131. Princeton Univ. Press, Princeton, NJ, 1993.Google Scholar
  15. [15]
    Givental, A., Equivariant Gromov-Witten invariants.Iternat. Math. Res. Notices, 1996, 613–663 (alg-geom/9603021).Google Scholar
  16. [16]
    —, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, inTopics in Singularity Theory: V. I. Arnold's 60th Anniversary Collection, pp. 103–115. Amer. Math. Soc. Transl. Ser. 2, 180. Amer. Math. Soc., Providence, RI, 1997 (alg-geom/9612001).Google Scholar
  17. [17]
    —, A mirror theorem for toric complete intersections, inTopological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), pp. 141–175. Progr. Math., 160. Birkhäuser Boston, Boston, MA, 1998 (alg-geom/9701016).Google Scholar
  18. [18]
    Gonciulea, N. &Lakshmibai, V., Degenerations of flag and Schubert varieties to toric varieties.Transform. Groups, 1 (1996), 215–248.MathSciNetGoogle Scholar
  19. [19]
    —, Schubert varieties, toric varieties, and ladder determinantal varieties.Ann. Inst. Fourier (Grenoble), 47 (1997), 1013–1064.MathSciNetGoogle Scholar
  20. [20]
    Kim, B., Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings.Internat. Math. Res. Notices 1950, 1–16.Google Scholar
  21. [21]
    Kim, B., On equivariant quantum cohomology.Internat. Math. Res. Notices 1996, 841–851.Google Scholar
  22. [22]
    — Quantum cohomology of flag manifoldsG/B and quantum Toda lattices.Ann. of Math., 149 (1999), 129–148.CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    — Quantum hyperplane section theorem for homogeneous spaces,Acta Math., 183 (1999), 71–99 (alg-geom/9712008).MATHMathSciNetGoogle Scholar
  24. [24]
    Lakshmibai, V., Degenerations of flag varieties to toric varieties.C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 1229–1234.MATHMathSciNetGoogle Scholar
  25. [25]
    Li, J. &Tian, G., Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties.J. Amer. Math. Soc., 11 (1998), 119–174.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Reid, M., Decomposition of toric morphisms, inArithmetic and Geometry, Vol. II, pp. 395–418. Progr. Math., 36. Birkhäuser Boston, Boston, MA, 1983.Google Scholar
  27. [27]
    Schechtman, V., On hypergeometric functions connected with quantum cohomology of flag spaces.q-alg/9712049.Google Scholar
  28. [28]
    Sturmfels, B.,Gröbner Bases and Convex Polytopes. Univ. Lecture Ser., 8. Amer. Math. Soc., Providence, Ri, 1996.Google Scholar

Copyright information

© Institut Mittag-Leffler 2000

Authors and Affiliations

  • Victor V. Batyrev
    • 1
  • Ionuţ Ciocan-Fontanine
    • 2
  • Bumsig Kim
    • 3
  • Duco van Straten
    • 4
  1. 1.Mathematisches InstitutEberhard-Karls-Universität TübingenTübingenGermany
  2. 2.Department of MathematicsNorthwestern UniversityEvanstonU.S.A.
  3. 3.Department of MathematicsPohang University of Science and Technology (Postech)PohangThe Republic of Korea
  4. 4.FB 17, MathematikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations