Acta Mathematica

, Volume 164, Issue 1, pp 73–144 | Cite as

The Helgason Fourier transform for compact Riemannian symmetric spaces of rank one

  • Thomas O. Sherman


Orthonormal Basis Projective Space Symmetric Space Real Form Fourier Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Erdelyi, A. et al.,Higher Transcendental Functions, McGrawHill, New York, 1953.Google Scholar
  2. [2]
    Helgason, S., Radon-Fourier transforms on symmetric spaces and related group representations.Bull. Amer. Math. Soc., 71 (1965), 757–763.MATHMathSciNetGoogle Scholar
  3. [3]
    —, A duality for symmetric spaces with applications to group representations.Adv. in Math., 5 (1970), 1–154.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    —,Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.MATHGoogle Scholar
  5. [5]
    —,Groups and Geometric Analysis. Academic Press, New York, 1984.MATHGoogle Scholar
  6. [6]
    Rainville, E.,Special Functions. MacMillan Co., New York, 1960.MATHGoogle Scholar
  7. [7]
    Saxe, M. &Sherman, T. O., Hilbert and Fourier transforms on a sphere.SIAM J. Math. Anal., 15 (1984), 605–620.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Sherman, T. O., Fourier analysis on the sphere.Trans. Amer. Math. Soc., 209 (1975), 1–31.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    —, Fourier analysis on compact symmetric space.Bull. Amer. Math. Soc., 83 (1977), 378–380.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Vretare, L., Elementary spherical functions on symmetric spaces.Math. Scand., 39 (1976), 343–358.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1990

Authors and Affiliations

  • Thomas O. Sherman
    • 1
  1. 1.Northeastern UniversityBostonMAUSA

Personalised recommendations