Acta Mathematica

, Volume 164, Issue 1, pp 73–144 | Cite as

The Helgason Fourier transform for compact Riemannian symmetric spaces of rank one

  • Thomas O. Sherman


Orthonormal Basis Projective Space Symmetric Space Real Form Fourier Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Erdelyi, A. et al.,Higher Transcendental Functions, McGrawHill, New York, 1953.Google Scholar
  2. [2]
    Helgason, S., Radon-Fourier transforms on symmetric spaces and related group representations.Bull. Amer. Math. Soc., 71 (1965), 757–763.MATHMathSciNetGoogle Scholar
  3. [3]
    —, A duality for symmetric spaces with applications to group representations.Adv. in Math., 5 (1970), 1–154.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    —,Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.MATHGoogle Scholar
  5. [5]
    —,Groups and Geometric Analysis. Academic Press, New York, 1984.MATHGoogle Scholar
  6. [6]
    Rainville, E.,Special Functions. MacMillan Co., New York, 1960.MATHGoogle Scholar
  7. [7]
    Saxe, M. &Sherman, T. O., Hilbert and Fourier transforms on a sphere.SIAM J. Math. Anal., 15 (1984), 605–620.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Sherman, T. O., Fourier analysis on the sphere.Trans. Amer. Math. Soc., 209 (1975), 1–31.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    —, Fourier analysis on compact symmetric space.Bull. Amer. Math. Soc., 83 (1977), 378–380.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Vretare, L., Elementary spherical functions on symmetric spaces.Math. Scand., 39 (1976), 343–358.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1990

Authors and Affiliations

  • Thomas O. Sherman
    • 1
  1. 1.Northeastern UniversityBostonMAUSA

Personalised recommendations