Keywords
Cyclic Homology Topological Cyclic Homology
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [A]Adams, J. F., A periodicity theorem in homological algebra.Proc. Cambridge Philos. Soc., 62 (1966), 365–377.zbMATHMathSciNetCrossRefGoogle Scholar
- [BF]Bousfield, A. K. &Friedlander, E. M., Homotopy theory of Γ-spaces, spectra and bisimplicial sets, inGeometric Applications of Homotopy Theory, Vol. II (Evanston, IL, 1977), pp. 80–130. Lecture Notes in Math., 658. Springer-Verlag, Berlin-New York, 1978.Google Scholar
- [BK]Bousfield, A. K. &Kan, D. M.,Homotopy Limits, Completions and Localizations. Lecture Notes in Math., 304. Springer-Verlag, Berlin-New York, 1972.zbMATHGoogle Scholar
- [Bö1]Bökstedt, M., Topological Hochschild homology. To appear inTopology.Google Scholar
- [Bö2]Bökstedt, M., Carlsson, G., Cohen, R., Goodwillie, T. G., Hsiang, W. C. &Madsen, I., The algebraic K-theory of simply connected spaces.Duke Math. J., 84 (1996), 541–563.CrossRefMathSciNetzbMATHGoogle Scholar
- [Bö3]Bökstedt, M., Hsiang, W. C. &Madsen, I., The cyclotomic trace and algebraic K-theory of spaces.Invent. Math., 111 (1993), 463–539CrossRefGoogle Scholar
- [Bö4]Bökstedt, M. &Madsen, I., Topological cyclic homology of the integers.Astérisque, 226 (1994), 57–143.Google Scholar
- [Bö5]—, Algebraic K-theory of local number fields: the unramified case, inProspects in Topology (Princeton, NJ, 1994), pp. 28–57. Ann. of Math. Stud., 138. Princeton Univ. Press, Princeton, NJ, 1995.Google Scholar
- [DGM]Dundas, B. I., Goodwillie, T. G. & McCarthy, R., In preparation.Google Scholar
- [DM]Dundas, B. I. &McCarthy, R., Stable K-theory and topological Hochschild homology.Ann. of Math., 140 (1994), 685–701.CrossRefMathSciNetzbMATHGoogle Scholar
- [Dw]Dwyer, W. G., Twisted homological stability for general linear groups.Ann. of Math., 111 (1980), 239–251.CrossRefzbMATHMathSciNetGoogle Scholar
- [EKMM]Elmendorf, A. D., Kriz, I., Mandell, M. A. &May, J. P.,Rings, Modules, and Algebras in Stable Homotopy Theory. With an Appendix by M. Cole. Math. Surveys Monographs, 47. Amer. Math. Soc., Providence, RI, 1997.zbMATHGoogle Scholar
- [FJ]Farrell, F. T. &Jones, L. E., Rigidity in geometry and topology, inProceedings of the International Congress of Mathematicians (Kyoto, 1990), pp. 653–663. Math. Soc. Japan, Tokyo, 1991.Google Scholar
- [G1]Goodwillie, T. G., Relative algebraic K-theory and cyclic homology.Ann. of Math., 124 (1986), 347–402.CrossRefzbMATHMathSciNetGoogle Scholar
- [G2]Goodwillie, T. G., Letter to F. Waldhausen, July 13, 1988.Google Scholar
- [G3]—, Calculus II: Analytic functors.K-Theory, 5 (1992), 295–332.CrossRefzbMATHMathSciNetGoogle Scholar
- [G4]Goodwillie, T. G., Notes on the cyclotomic trace (March 23, 1990). Lecture notes from a lecture series given at MSRI during the spring of 1990.Google Scholar
- [G5]—, The differential calculus of homotopy functors, inProceedings of the International Congress of Mathematicians (Kyoto, 1990), pp. 621–630. Math. Soc. Japan, Tokyo, 1991.Google Scholar
- [HM]Hesselholt, L. &Madsen, I., On the K-theory of finite algebras over Witt vectors of perfect fields.Topology, 36 (1997), 29–101.CrossRefMathSciNetzbMATHGoogle Scholar
- [I]Igusa, K., The stability theorem for smooth pseudoisotopies.K-Theory, 2 (1988), 1–355.CrossRefzbMATHMathSciNetGoogle Scholar
- [KR]Klein, J. R. &Rognes, J., The fiber of the linearization mapA(*)→K(Z).Topology, 36 (1997), 829–848.CrossRefMathSciNetzbMATHGoogle Scholar
- [L]Lydakis, M., Smash products and Γ-spaces. To appear inJ. Pure Appl. Algebra.Google Scholar
- [M1]Madsen, I., Algebraic K-theory and traces, inCurrent Developments in Mathematics (R. Bott, A. Jaffe and S. T. Yau, eds.), pp. 191–323. International Press, 1995.Google Scholar
- [M2]—, The cyclotomic. trace in algebraic K-theory, inFirst European Congress of Mathematics, Vol. II (Paris, 1992), pp. 213–241. Progress in Math., 120. Birkhäuser, Basel, 1994.Google Scholar
- [Mc]McCarthy, R., Relative algebraic K-theory and topological cyclic homology.Acta Math., 179 (1997), 197–222.zbMATHMathSciNetGoogle Scholar
- [PW]Pirashvili, T. &Waldhausen, F., Mac Lane homology and topological Hochschild homology.J. Pure Appl. Algebra, 82 (1992), 81–98.CrossRefMathSciNetzbMATHGoogle Scholar
- [Q1]Quillen, D. G., Finite generation of the groupsK i of rings of algebraic integers, inAlgebraic K-Theory I—Higher K-Theories (Battelle Institute, 1972), pp. 179–198. Lecture Notes in Math., 341. Springer-Verlag, Berlin-New York, 1973.Google Scholar
- [Q2]—,Homotopical Algebra. Lecture Notes in Math., 43. Springer-Verlag, Berlin-New York, 1967.zbMATHGoogle Scholar
- [R]Rognes, J., Algebraic K-theory of the two-adic integers. To appear inJ. Pure Appl. Algebra.Google Scholar
- [Sä]Schwänzl, R., Staffeldt, R. &Waldhausen, F., Stable K-theory and topological Hochschild homology ofA ∞ rings.Contemp. Math., 199 (1996), 161–173.Google Scholar
- [Se]Schwede, S., Stable homotopy of algebraic theories. Thesis, Bielefeld, 1996.Google Scholar
- [W1]Waldhausen, F., Algebraic K-theory of spaces, concordance, and stable homotopy theory, inAlgebraic Topology and Algebraic K-Theory (Princeton, NJ, 1983), pp. 392–417. Ann. of Math. Stud., 113. Princeton Univ. Press, Princeton, NJ, 1987.Google Scholar
- [W2]—, Algebraic K-theory of generalized free products.Ann. of Math., 108 (1978), 135–256.CrossRefzbMATHMathSciNetGoogle Scholar
Copyright information
© Institut Mittag-Leffler 1997