Advertisement

Acta Mathematica

, 192:119 | Cite as

Harmonic analysis, cohomology, and the large-scale geometry of amenable groups

  • Yehuda Shalom
Article

Keywords

Nilpotent Group Fundamental Domain Solvable Group Wreath Product Amenable Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Assouad, P., Plongements lipschitziens dansR n.Bull. Soc. Math. France, 111 (1983), 429–448.MATHMathSciNetGoogle Scholar
  2. [2]
    Baumslag, G., Wreath products and finitely presented groups.Math. Z., 75 (1960/1961). 22–28.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Benjamini, I. &Schramm, O., Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant.Geom. Funct. Anal., 7 (1997), 403–419.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Benoist, Y., Private communication (available upon request).Google Scholar
  5. [5]
    Bergelson, V., Weakly mixing PET.Ergodic Theory Dynam Systems, 7 (1987), 337–349.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Bergelson, V. &Rosenblatt, J., Mixing actions of groups.Illinois J. Math., 32 (1988), 65–80.MATHMathSciNetGoogle Scholar
  7. [7]
    Bestvina, M. &Feighin, M., Proper actions of lattices on contractible manifolds.Invent. Math., 150 (2002), 237–256.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Bestvina, M., Kapovich, M. &Kleiner, B., van Kampen's embedding obstruction for discrete groups.Invent. Math., 150 (2002), 219–235.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Bieri, R.,Homological Dimensibn of Discrete Groups. Queen Mary College Mathematics Notes, Queen Mary College, London, 1976.Google Scholar
  10. [10]
    Bieri, R. &Strebel, R., Almost finitely presented soluble groups.Comment. Math. Helv., 53 (1978), 258–278.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Block, J. &Weinberger, S., Large scale homology theories and geometry, inGeometric Topology (Athens, GA, 1993), pp. 522–569. AMS/IP Stud. Adv. Math., 2.1., Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  12. [12]
    Borel, A. &Serre, J.-P., Corners and arithmetic groups.Comment. Math. Helv., 48 (1973), 436–491.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Bourdon, M. &Pajot, H., Rigidity of quasi-isometries for some hyperbolic buildings.Comment. Math. Helv., 75 (2000), 701–736.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Bridson, M. R. &Gersten, S. M., The optimal isoperimetric inequality for torus bundles over the circle.Q. J. Math., 47 (1996), 1–23.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Chou, C., Elementary amenable groups.Illinois J. Math., 24 (1980), 396–407.MATHMathSciNetGoogle Scholar
  16. [16]
    Delorme, P., 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations.Bull. Soc. Math. France, 105 (1977), 281–336.MATHMathSciNetGoogle Scholar
  17. [17]
    Drutu, C., Quasi-isometry invariants and asymptotic cones.Internat. J. Algebra Comput., 12 (2002), 99–135.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Dunwoody, M. J., Accessibility and groups of cohomological dimension one.Proc. London Math. Soc., 38 (1979), 193–215.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Dyubina, A., Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups.Int. Math. Res. Not., 2000 (2000), 1997–1101.CrossRefGoogle Scholar
  20. [20]
    Erschler, A., On isoperimetric profiles of finitely generated groups.Geom. Dedicata, 100 (2003), 151–171.CrossRefMathSciNetGoogle Scholar
  21. [21]
    Farb, B., The quasi-isometry classification of lattices in semisimple Lie groups.Math. Res. Lett., 4 (1997), 705–717.MATHMathSciNetGoogle Scholar
  22. [22]
    Farb, B. &Mosher, L., A rigidity theorem for the solvable Baumslag-Solitar groups.Invent. Math., 131 (1998), 419–451.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    —, Quasi-isometric rigidity for the solvable Baumslag-Solitar groups, II.Invent. Math., 137 (1999), 613–649.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    —, On the asymptotic geometry of abelian-by-cyclic groups.Acta Math., 184 (2000), 145–202.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    —, Problems on the geometry of finitely generated solvable groups, inCrystallographic Groups and their Generalizations (Kortrijk, 1999), pp. 121–134. Contemp. Math., 262. Amer. Math. Soc., Providence, RI, 2000.Google Scholar
  26. [26]
    —, The geometry of surface-by-free groups.Geom. Funct. Anal., 12 (2002), 915–963.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Gersten, S. M., Quasi-isometry invariance of cohomological dimension.C. R. Acad. Sci. Paris Sér. I. Math., 316 (1993), 411–416.MATHMathSciNetGoogle Scholar
  28. [28]
    Ghys, É. &de la Harpe, P. (editors),Sur les groupes hyperboliques d'après Mikhael Gromov. Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. Progr. Math., 83. Birkhäuser, Boston, MA, 1990.MATHGoogle Scholar
  29. [29]
    Gildenhuys, D. &Strebel, R., On the cohomology of soluble groups, II.J. Pure Appl. Algebra, 26 (1982), 293–323.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Gromov, M., Groups of polynomial growth and expanding maps.Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    —, Asymptotic invariants of infinite groups, inGeometric Group Theory, Vol. 2 (Sussex, 1991), pp. 1–295. London Math. Soc. Lecture Note Ser., 182. Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  32. [32]
    Guichardet, A.,Cohomologie des groupes topologiques et des algèbres de Lie. Textes Mathématiques, 2. CEDIC, Paris, 1980.MATHGoogle Scholar
  33. [33]
    de la Harpe, P.,Topics in Geometric Group Theory. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.MATHGoogle Scholar
  34. [34]
    de la Harpe, P. &Valette, A.,La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque, 175. Soc. Math. France, Paris, 1989.MATHGoogle Scholar
  35. [35]
    Kapovich, M. & Kleiner, B., Coarse Alexander duality and duality groups. To appear inJ. Differential Geom.Google Scholar
  36. [36]
    Korevaar, N. J. &Schoen, R. M., Global existence theorems for harmonic maps to non-locally compact spaces.Comm. Anal. Geom., 5 (1997), 333–387.MATHMathSciNetGoogle Scholar
  37. [37]
    Kropholler, P. H., Cohomological dimension of soluble groups.J. Pure Appl. Algebra, 43 (1986), 281–287.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    Macdonald, I. D.,The Theory of Groups. Reprint of the 1968 original. Krieger, Malabar, FL, 1988.Google Scholar
  39. [39]
    Merzlyakov, Yu. I., Locally solvable groups of finite rank.Algebra i Logika Sem., 3 (1964), 5–16 (Russian).Google Scholar
  40. [40]
    Milnor, J., Growth of finitely generated solvable groups.J. Differential Geom., 2 (1968), 447–449.MATHMathSciNetGoogle Scholar
  41. [41]
    Monod, N. & Shalom, Y., Orbit equivalence rigidity and bounded cohomology. To appear inAnn. of Math. Google Scholar
  42. [42]
    Montgomery, D. &Zippin, L.,Topological Transformation Groups. Reprint of the 1955 original. Krieger, Huntington, NY, 1974.MATHGoogle Scholar
  43. [43]
    Mosher, L., Sageev, M. &Whyte, K., Quasi-actions on trees, I: Bounded valence.Ann. of Math., 158 (2003), 115–164.MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.Ann. of Math., 129 (1989), 1–60.CrossRefMathSciNetGoogle Scholar
  45. [45]
    Raghunathan, M. S.,Discrete Subgroups of Lie Groups. Ergeb. Math. Grenzgeb., 68. Springer-Verlag, New York-Heidelberg, 1972.MATHGoogle Scholar
  46. [46]
    Reiter Ahlin, A., The large scale geometry of nilpotent-by-cyclic groups. Ph.D. Thesis, University of Chicago, 2002.Google Scholar
  47. [47]
    Rosenblatt, J. M., Invariant measures and growth conditions.Trans. Amer. Math. Soc., 193 (1974), 33–53.MATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    Sela, Z., Uniform embeddings of hyperbolic groups in Hilbert spaces.Israel J. Math., 80 (1992), 171–181.MATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    Shalom, Y., The growth of linear groups.J. Algebra, 199 (1998), 169–174.MATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    —, Rigldity of commensurators and irreducible lattices.Invent. Math., 141 (2000), 1–54.MATHCrossRefMathSciNetGoogle Scholar
  51. [51]
    Stammbach, U., On the weak homological dimension of the group algebra of solvable groups.J. London Math. Soc., 2 (1970), 567–570.MATHMathSciNetGoogle Scholar
  52. [52]
    Tits, J., Appendix to “Groups of polynomial growth and expanding maps” by M. Gromov.Inst. Hautes Études Sci. Publ. Math., 53 (1981), 74–78.MathSciNetGoogle Scholar
  53. [53]
    Vershik, A. M. &Karpushev, S. I., Cohomology of groups in unitary representations, neighborhood of the identity and conditionally positive definite functions.Mat. Sb., 119 (161), (1982), 521–533. (Russian); English translation inMath. USSR-Sb., 47 (1984), 513–526.MathSciNetGoogle Scholar
  54. [54]
    Wolf, J. A., Growth of finitely generated solvable groups and curvature of Riemannian manifolds.J. Differential Geom., 2 (1968), 421–446.MATHGoogle Scholar
  55. [35]
    Zimmer, R. J.,Ergodic Theory and Semisimple Groups. Monographs Math., 81. Birkhäuser, Basel, 1984.MATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2004

Authors and Affiliations

  • Yehuda Shalom
    • 1
  1. 1.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations