Acta Mathematica

, Volume 163, Issue 1, pp 291–309 | Cite as

Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex

  • G. R. Burton


Vortex Saddle Point Uncountable Family Steady Configuration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Benjamin, T. B., The alliance of practical and analytic insights into the nonlinear problems of fluid mechanics.Applications of methods of functional analysis to problems in mechanics. Lecture Notes in Mathematics 503, Springer, 1976, pp. 8–29.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Brown, J. R., Approximation theorems for Markov operators.Pacific J. Math., 16 (1966), 13–23.MATHMathSciNetGoogle Scholar
  3. [3]
    Burton, G. R., Rearrangements of functions, maximization of convex functionals, and vortex rings.Math. Ann., 276 (1987), 225–253.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    —, Steady symmetric vortex pairs and rearrangements.Proc. Roy. Soc. Edinburgh Sect. A., 108 (1988), 269–290.MATHMathSciNetGoogle Scholar
  5. [5]
    —, Variational problems on classes of rearrangements and multiple configurations for steady vortices.Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 295–319.MATHMathSciNetGoogle Scholar
  6. [6]
    Crowe, J. A., Zweibel, J. A. &Rosenbloom, P. C., Rearrangements of functions.J. Funct. Anal., 66 (1986), 432–438.CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    Gilbarg, D. & Trudinger, N. S.,Elliptic Partial Differential Equations of Second Order. 2nd edition, Springer, 1983.Google Scholar
  8. [8]
    McLeod, J. B., Rearrangements. Preprint.Google Scholar
  9. [9]
    Migliaccio, L., Sur une condition de Hardy, Littlewood, Pólya.C. R. Acad. Sci. Paris Sér. I. Math., 297 (1983), 25–28.MATHMathSciNetGoogle Scholar
  10. [10]
    Royden, H. L.,Real Analysis. Macmillan, 1963.Google Scholar
  11. [11]
    Ryff, J. V., Orbits ofL 1-functions under doubly stochastic transformations.Trans. Amer. Math. Soc., 117 (1965), 92–100.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    —, Majorized functions and measures.Indag. Math., 30 (1968), 431–437.MathSciNetGoogle Scholar
  13. [13]
    Thomson, Sir William (Lord Kelvin), Maximum and minimum energy in vortex motion.Mathematical and Physical Papers, vol. 4, pp. 172–183. Cambridge University Press, 1910.Google Scholar

Copyright information

© Almqvist & Wiksell 1989

Authors and Affiliations

  • G. R. Burton
    • 1
  1. 1.University of BathBathEngland, UK

Personalised recommendations