Acta Mathematica

, Volume 163, Issue 1, pp 181–252 | Cite as

Quasiconformal 4-manifolds

  • S. K. Donaldson
  • D. P. Sullivan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahlfors, L. V.,Lectures on quasiconformal mapping. Van Nostrand, (Princeton) 1966. (Reprinted, Wadsworth Inc., Belmont 1987.)Google Scholar
  2. [2]
    Atiyah, M. F., Hitchin, N. J. &Singer, I. M., Self-duality in four dimensional Riemannian geometry.Proc. Roy. Soc. London Ser. A., 362 (1978), 425–461.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Atiyah, M. F. &Singer, I. M., The index of elliptic operators I.Ann. of Math., 87 (1968), 484–530.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Boyarskii, B. V., Homeomorphic solutions of Beltrami systems.Dokl. Akad. Nauk. SSSR, 102 (1955), 661–664.MathSciNetGoogle Scholar
  5. [5]
    Donaldson, S. K., An application of gauge theory to four dimensional topology.J. Differential Geom., 18 (1983), 279–315.MATHMathSciNetGoogle Scholar
  6. [6]
    —, Connections, cohomology and the intersection forms of four manifolds.J. Differential Geom., 24 (1986), 275–341.MATHMathSciNetGoogle Scholar
  7. [7]
    —, The orientation of Yang-Mills moduli spaces and 4-manifold topology.J. Differential Geom., 26 (1987), 397–428.MATHMathSciNetGoogle Scholar
  8. [8]
    —, Irrationality and theh-cobordism conjecture.J. Differential Geom., 26 (1987), 141–168.MATHMathSciNetGoogle Scholar
  9. [9]
    Donaldson, S. K., Polynomial invariants for smooth four manifolds. In press withTopology.Google Scholar
  10. [10]
    Donaldson, S. K., The Geometry of four manifolds.Proc. Int. Congress Mathematicians, Berkeley, 1986, ed. A. Gleason, pp. 43–54.Google Scholar
  11. [11]
    Eells, J., A setting for global analysis.Bull. Amer. Math. Soc. 72 (1966), 751–807.MathSciNetGoogle Scholar
  12. [12]
    Fintushel, R. &Stern, R.,SO(3) connections and the topology of four manifolds.J. Differential Geom., 20 (1984), 523–539.MathSciNetMATHGoogle Scholar
  13. [13]
    Freed, D. S. &Uhlenbeck, K. K.,Instantons and four manifolds. Math. Sci. Res. Publ. 1. Springer, New York 1984.MATHGoogle Scholar
  14. [14]
    Freedman, M. H., The topology of four dimensional manifolds.J. Differential Geom., 17 (1982), 357–453.MATHMathSciNetGoogle Scholar
  15. [15]
    Furuta, M., Perturbation of moduli spaces of self-dual connections.J. Fac. Sci. Univ. Tokyo Sect. IA, 34 (1987), 275–297.MATHMathSciNetGoogle Scholar
  16. [16]
    Gehring, F. W., TheL p-integrability of the partial derivatives of a quasiconformal mapping.Acta Math., 130 (1973), 265–277.MATHMathSciNetGoogle Scholar
  17. [17]
    Giaquinta, M.,Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Studies 105, Princeton U.P. 1983.Google Scholar
  18. [18]
    Gilberg, D. &Trudinger, N. S.,Elliptic partial differential equations of second order. Springer Verlag, Berlin 1983.Google Scholar
  19. [19]
    Kotschick, D., On manifolds homeomorphic to\(CP^2 \# 8\overline {CP} ^2 \).Invent. Math., 95 (1989), 591–600.CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    Quinn, F., Ends of maps III, dimensions 4 and 5.J. Differential Geom., 17 (1982), 503–521.MATHMathSciNetGoogle Scholar
  21. [21]
    Restrepo, G., Differentiable norms in Banach spaces.Bull. Amer. Math. Soc., 70 (1964), 413–414.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Sedlacek, S., A direct method for minimising the Yang-Mills functional.Comm. Math. Phys., 86 (1982), 515–528.CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    Segal, G. B., Fredholm complexes.Quart. J. Math. (2), 21 (1970), 385–402.MATHGoogle Scholar
  24. [24]
    Stein, E. M.,Singular integral operators and differentiability properties of functions. Princeton U.P. 1970.Google Scholar
  25. [25]
    Sullivan, D. P., Hyperbolic geometry and homeomorphisms.Proc. Georgia Conf. on Geometric Topology, 1978, ed. J. Cantrell. Academic Press, New York.Google Scholar
  26. [26]
    Taubes, C. H., Self-dual connections on manifolds with indefinite intersection matrix.J. Differential Geom., 19 (1984), 517–560.MATHMathSciNetGoogle Scholar
  27. [27]
    —, Gauge theory on asymptotically periodic 4-manifolds.J. Differential Geom., 25 (1987), 363–430.MATHMathSciNetGoogle Scholar
  28. [28]
    Teleman, N., The index of signature operators on Lipschitz manifolds.Publ. Math. Inst. Hautes Études Sci., 58 (1983), 39–78.MathSciNetCrossRefGoogle Scholar
  29. [29]
    —, The index theorem for topological manifolds.Acta Math., 153 (1984), 117–152.MATHMathSciNetGoogle Scholar
  30. [30]
    Uhlenbeck, K. K., Connections withL p bounds on curvature.Comm. Math. Phys., 83 (1982), 31–42.CrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    —, Removable singularities in Yang-Mills fields.Comm. Math. Phys., 83 (1982), 11–30.CrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    Väisälä, J.,Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer 1971.Google Scholar

Copyright information

© Almqvist & Wiksell 1989

Authors and Affiliations

  • S. K. Donaldson
    • 1
  • D. P. Sullivan
    • 2
  1. 1.Mathematical InstituteOxfordEngland
  2. 2.I.H.E.S.BuresFrance

Personalised recommendations