Skip to main content
Log in

Solving the quintic by iteration

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  1. Abel, N. H., Beweis der Unmöglichkeit algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen.J. Reine Angew. Math., 1 (1826), 65–84.

    MATH  Google Scholar 

  2. Dickson, L.,Modern Algebraic Theories. Benj. H. Sanborn & Co., 1930.

  3. Douady, A. & Hubbard, J.,Étude dynamique des polynômes complexes. Publ. Math. d'Orsay, 1984.

  4. Fricke, R.,Lehrbuch der Algebra, Vol. 2. Vieweg, 1926.

  5. Green, M., On the analytic solution of the equation of fifth degree.Compositio Math., 37 (1978), 233–241.

    MATH  MathSciNet  Google Scholar 

  6. Grothendieck, A., Le groupe de Brauer I: Algèbres d'Azumaya et interpretations diverses.Séminaire Bourbaki, 290 (1965).

  7. Grothendieck, A., Le groupe de Brauer II: Théorie cohomologique.Séminaire Bourbaki, 297 (1965).

  8. Klein, F.,Elementary Mathematics from an Advanced Standpoint. Arithmetic, Algebra, Analysis. McMillan Co., 1932.

  9. Klein, F.,Gesammelte Mathematische Abhandlungen. Vol. 2, Springer, 1922.

  10. Klein, F.,Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. B.G. Teubner, 1884.

  11. McMullen, C., Braiding of the attractor and the failure of iterative algorithms.Invent. Math., 91 (1988), 259–272.

    Article  MATH  MathSciNet  Google Scholar 

  12. —, Families of rational maps and iterative root-finding algorithms.Ann. of Math., 125 (1987), 467–493.

    Article  MATH  MathSciNet  Google Scholar 

  13. Merkurev, A. S. &Suslin, A. A.,K-cohomology of Severi-Brauer varieties and the norm residue homomorphisms.Math. USSR-Izv., 21 (1983), 307–340.

    Article  Google Scholar 

  14. Serre, J. P., Extensions icosaédriques. InOeuvres III, pp. 550–554. Springer-Verlag, 1986.

  15. Serre, J. P.,Local Fields. Springer-Verlag, 1979.

  16. Shub, M. &Smale, S., On the existence of generally convergent algorithms.J. Complexity, 2 (1986), 2–11.

    Article  MathSciNet  MATH  Google Scholar 

  17. Smale, S., On the efficiency of algorithms of analysis.Bull. Amer. Math. Soc., 13 (1985), 87–121.

    Article  MATH  MathSciNet  Google Scholar 

  18. Sullivan, D., Conformal dynamical systems. InGeometric Dynamics, pp. 725–752. Lecture Notes in Mathematics, 1007 (1983). Springer-Verlag.

  19. Thurston, W. P., On the combinatorics and dynamics of iterated rational maps. Preprint.

  20. van der Waerden, B. L.,Geometry and Algebra in Ancient Civilizations. Springer-Verlag, 1983.

  21. van der Waerden, B. L.,A History of Algebra: from al-Khwarizmi to Emmy Noether. Springer-Verlag, 1985.

Download references

Author information

Authors and Affiliations


Additional information

On leave from Bell Labs; research supported by an N.S.F. Postdoctoral Fellowship.

Research supported by the Institute for Advanced Study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, P., McMullen, C. Solving the quintic by iteration. Acta Math. 163, 151–180 (1989).

Download citation

  • Received:

  • Issue Date:

  • DOI: