Acta Mathematica

, Volume 163, Issue 1, pp 109–149 | Cite as

Complex geometry of convex domains that cover varieties

  • Sidney Frankel


Complex Geometry Convex Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baily, W., On the quotient of an analytic manifold by a group of analytic homeomorphisms.Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 804–808.MATHMathSciNetGoogle Scholar
  2. [2]
    Cartan, H., Quotient d'un espace analytique par une groupe d'automorphismes, inAlgebraic Geometry and Topology, a Symposium in honor of Solomon Lefschetz, pp. 90–102. Princeton University Press, Princeton, New Jersey, 1957; see alsoSeminaire H. Cartan, 1952–54.Google Scholar
  3. [3]
    Cheng, S. &Yau, S. T., On the existence of a complete Kähler metric.Comm. Pure Appl. Math. 33 (1980), 507–544.MathSciNetGoogle Scholar
  4. [4]
    Fornaess, J. E. &Sibony, N., Increasing sequences of complex manifolds.Math. Ann., 255 (1981), 351–360.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Frankel, S., Stanford thesis, 1985.Google Scholar
  6. [6]
    Frankel, S., Affine approach to complex geometry. To appear inContemporary Mathematics, Proceedings of November 1987AMS Meeting on Differential Geometry in Los Angeles. Ed. S. Y. Cheng and R. E. Greene.Google Scholar
  7. [7]
    Goldman, W., Convex real projective structures on compact surfaces. Preprint.Google Scholar
  8. [8]
    Greene, R., Private communication.Google Scholar
  9. [9]
    Gromov, M., Lafontaine, J &Pansu, P.,Structures Metriques sur les Varietes Riemannienes. Cedic/Fernand Nathan, Paris, 1981.Google Scholar
  10. [10]
    Hano, J. L., On Kählerian homogeneous spaces of unimodular Lie groups.Amer J. Math., 79 (1957) 885–900.MATHMathSciNetGoogle Scholar
  11. [11]
    Hayman, W. K.,Multivalent Functions. Cambridge Tracts, 48. Cambridge University Press, 1958.Google Scholar
  12. [12]
    Helgason, S.,Differential Geometry and Symmetric Spaces orDifferential Geometry, Lie Groups and Symmetric Spaces. Acad. Press, New York, 1978.Google Scholar
  13. [13]
    Hochschild, G.,The Structure of Lie Groups. (Holden-Day) San Francisco, 1965.Google Scholar
  14. [14]
    Iwasawa, K., On some types of topological groups.Ann of Math (2), 50 (1949), 507–558.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    Jacobson, N.,Lie Algebras. Interscience tracts no. 10, John Wiley, New York, 1966.Google Scholar
  16. [16]
    Katz, V. &Vinberg, E. B., Quasi-homogeneous cones.Mat. Zametki=Math. Notes, 1 (1967), 231–235.Google Scholar
  17. [17]
    Kobayashi, S.,Hyperbolic Manifolds and Holomorphic Mappings. M. Dekker, New York, 1970.Google Scholar
  18. [18]
    —, Geometry of bounded domains.Trans. Amer. Math. Soc., 92 (1959), 267–290.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    Kobayashi, S. &Chu, H., The automorphism group of a geometric structure.Trans. Amer. Math. Soc., 113 (1964), 141–150.CrossRefMathSciNetGoogle Scholar
  20. [20]
    Kodaira, K., On Kähler varieties of restricted type.Proc. Nat. Acad. Sci. U.S.A., 40 (1954) 313–316; see alsoAnn. of Math. 60 (1954), 28–48.MATHMathSciNetGoogle Scholar
  21. [21]
    —, A certain type of irregular algebraic surfaces.J. Analyse Math., 19 (1967), 207–215.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    Kodaira, K. & Morrow, J.,Complex Manifolds. Holt-Rhinehart-Winston, 1971.Google Scholar
  23. [23]
    Kohn J. &Nirenberg, L., A pseudoconvex domain not admitting a holomorphic support function.Math. Ann., 201 (1973), 265–268.CrossRefMathSciNetGoogle Scholar
  24. [24]
    Milnor, J.,Characteristic Classes. Ann. of Math. Stud., 76. Princeton University Press, 1974.Google Scholar
  25. [25]
    Mostow, G. D. &Siu, Y. T., A compact Kähler surface of negative curvature not covered by the ball,Ann. of Math. (2), 112 (1980), 321–360.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Mok, N. & Yau, S. T., Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions, inSymposia in Pure Math. The Mathematical Heritage of Henri Poincaré, vol. 39, part 1, 1983, AMS, pp. 41–60.Google Scholar
  27. [27]
    Montgomery, D. & Zippin, L.,Topological Transformation Groups. Interscience tracts in Pure and Appl. Math. no. 1, 1955.Google Scholar
  28. [28]
    Mosher, R. &Tangora, M.,Cohomology Operations in Homotopy Theory. New York Harper and Row New York, 1968.Google Scholar
  29. [29]
    Myers, S. B. & Steenrod, N., The group of isometries of a Riemannian manifold.Google Scholar
  30. [30]
    Piiatetskii-Shapiro, I. I.,Automorphic Functions and the Geometry of Classical Domains. (English translation) Gordon Breach, New York, 1969.Google Scholar
  31. [31]
    Raghunathan, M.,Discrete subgroups of Lie Groups. Springer, New York, 1972.Google Scholar
  32. [32]
    Vey, J., Sur la division des domaines de Siegel.Ann. Sci. École Norm. Sup., 3 (1970), 479–506.MATHMathSciNetGoogle Scholar
  33. [33]
    Wells, R., Deformations of strongly pseudoconvex domains inC n, inSymposia in Pure Math., 30, part 2 (1977), pp. 125–128.Google Scholar
  34. [34]
    Wong, B., Characterisation of the ball by its automorphism group.Invent. Math., 41 (1977), 253–257.CrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    — The uniformization of compact Kähler surfaces of negative curvature.J. Differential Geom., 16 (1981), 407–420.MATHMathSciNetGoogle Scholar
  36. [36]
    Yau, S. T., Nonlinear analysis in geometry.Enseign. Math. (2), 38 (1987), 109–158.Google Scholar
  37. [37]
    Zimmer, R. J.,Ergodic Theory and Semi-Simple Lie Groups. Birkhäuser, 1984.Google Scholar

Copyright information

© Almqvist & Wiksell 1989

Authors and Affiliations

  • Sidney Frankel
    • 1
  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations