Acta Mathematica

, Volume 148, Issue 1, pp 159–192 | Cite as

Boundary behavior of the complex Monge-Ampère equation

  • John Lee
  • Richard Melrose


Vector Field Pseudoconvex Domain Boundary Behaviour Coordinate Chart Levi Form 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cheng, S.-Y. &Yau, S. T., On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equation.Comm. Pure Appl. Math., 33 (1980), 507–544.MATHMathSciNetGoogle Scholar
  2. [2]
    Fefferman, C., Monge-Ampère equations, the Bergman kernel and geometry of pseudoconvex domains.Ann. of Math., 103 (1976), 395–416.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Greiner, P. C. &Stein, E. M., Estimates for the\(\bar \partial \) Problem. Mathematical Notes no. 19, Princeton University Press, Princeton N.J., 1977.Google Scholar
  4. [4]
    Melrose, R. B., Transformation of boundary problems.Acta Math., 147: 3–4 (1981), 149–236.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I.Comm. Pure Appl. Math., 31 (1978), 339–411.MATHMathSciNetGoogle Scholar
  6. [6]
    Graham, C. R.,The Dirichlet problem for the Bergman Laplacian. Thesis, Princeton University, 1981.Google Scholar

Copyright information

© Almqvist & Wiksell 1982

Authors and Affiliations

  • John Lee
    • 1
  • Richard Melrose
    • 2
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.M.I.T.CambridgeUSA

Personalised recommendations