Acta Mathematica

, Volume 148, Issue 1, pp 159–192 | Cite as

Boundary behavior of the complex Monge-Ampère equation

  • John Lee
  • Richard Melrose


Vector Field Pseudoconvex Domain Boundary Behaviour Coordinate Chart Levi Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cheng, S.-Y. &Yau, S. T., On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equation.Comm. Pure Appl. Math., 33 (1980), 507–544.MATHMathSciNetGoogle Scholar
  2. [2]
    Fefferman, C., Monge-Ampère equations, the Bergman kernel and geometry of pseudoconvex domains.Ann. of Math., 103 (1976), 395–416.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Greiner, P. C. &Stein, E. M., Estimates for the\(\bar \partial \) Problem. Mathematical Notes no. 19, Princeton University Press, Princeton N.J., 1977.Google Scholar
  4. [4]
    Melrose, R. B., Transformation of boundary problems.Acta Math., 147: 3–4 (1981), 149–236.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I.Comm. Pure Appl. Math., 31 (1978), 339–411.MATHMathSciNetGoogle Scholar
  6. [6]
    Graham, C. R.,The Dirichlet problem for the Bergman Laplacian. Thesis, Princeton University, 1981.Google Scholar

Copyright information

© Almqvist & Wiksell 1982

Authors and Affiliations

  • John Lee
    • 1
  • Richard Melrose
    • 2
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.M.I.T.CambridgeUSA

Personalised recommendations