Skip to main content
Log in

The Schrödinger operator on the energy space: boundedness and compactness criteria

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. [AdH]Adams, D. R. &Hedberg, L. I.,Function Spaces and Potential Theory, Grundlehren Math. Wiss., 314. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  2. [AiS]Aizenman, M. &Simon, B., Brownian motion and Harnack inequality for Schrödinger operators.Comm. Pure Appl. Math., 35 (1982), 209–273.

    MathSciNet  MATH  Google Scholar 

  3. [An]Ancona, A., On strong barriers and an inequality of Hardy for domains inR n.J. London Math. Soc. (2), 34 (1986), 274–290.

    MATH  MathSciNet  Google Scholar 

  4. [BeS]Berezin, F. A. &Shubin, M. A.,The Schrödinger Equation. Math. Appl. (Soviet Ser.), 66. Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  5. [Bi]Birman, M. S., The spectrum of singular boundary problems.Mat. Sb. (N.S.), 55 (1961), 125–174. (Russian); English translation inAmer. Math. Soc. Transl. Ser. 2. 53 (1966), 23–80.

    MATH  MathSciNet  Google Scholar 

  6. [BiS1]Birman, M. S. &Solomyak, M. Z.,Spectral Theory of Self-Adjoint Operators in Hilbert Space. Math. Appl. (Soviet Ser.) Reidel, Dordrecht, 1987.

    MATH  Google Scholar 

  7. [BiS2]— Schrödinger operator. Estimates for number of bound states as function-theoretical problem, inSpectral Theory of Operators (Novgorod, 1989), pp. 1–54. Amer. Math. Soc. Transl. Ser. 2, 150. Amer. Math. Soc., Providence, RI, 1992.

    Google Scholar 

  8. Coifman, R. R. &Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals.Studia Math., 51 (1974), 241–250.

    MathSciNet  MATH  Google Scholar 

  9. Combescure, M. &Ginibre, J., Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials.Ann. Inst. H. Poincaré Sect. A (N.S.), 24 (1976), 17–30.

    MathSciNet  MATH  Google Scholar 

  10. Chang, S.-Y. A., Wilson, J. M. &Wolff, T. H., Some weighted norm inequalities concerning the Schrödinger operators.Comment. Math. Helv., 60 (1985), 217–246.

    MathSciNet  MATH  Google Scholar 

  11. Chung, K. L. &Zhao, Z. X.,From Brownian Motion to Schrödinger's Equation. Grundlehren Math. Wiss., 312. Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  12. Davies, E. B.,L p spectral theory of higher-order elliptic differential operators.Bull. London Math. Soc., 29 (1997), 513–546.

    Article  MATH  MathSciNet  Google Scholar 

  13. [D2]—, A review of Hardy inequalities, inThe Maz'ya Anniversary Collection, Vol. 2 (Rostock, 1998), pp. 55–67. Oper. Theory Adv. Appl., 110. Birkhäuser, Basel, 1999.

    Google Scholar 

  14. Edmunds, D. E. &Evans, W. D.,Spectral Theory and Differential Operators. Oxford Math. Monographs. Clarendon Press, Oxford Univ. Press, New York, 1987.

    MATH  Google Scholar 

  15. Faris, W. G.,Self-Adjoint Operators. Lecture Notes in Math., 433. Springer-Verlag, Berlin-New York, 1975.

    MATH  Google Scholar 

  16. Fefferman, C., The uncertainty principle.Bull. Amer. Math. Soc. (N.S.), 9 (1983), 129–206.

    MATH  MathSciNet  Google Scholar 

  17. Hille, E., Non-oscillation theorems.Trans. Amer. Math. Soc., 64 (1948), 234–252.

    Article  MATH  MathSciNet  Google Scholar 

  18. Hansson, K., Maz'Ya, V. G. &Verbitsky, I. E., Criteria of solvability for multi-dimensional Riccati equations.Ark. Mat., 37 (1999), 87–120.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalton, N. J. &Verbitsky, I. E., Nonlinear equations and weighted norm inequalities.Trans. Amer. Math. Soc., 351 (1999), 3441–3497.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kerman, R. &Sawyer, E., The trace inequality and eigenvalue estimates for Schrödinger operators.Ann. Inst. Fourier (Grenoble), 36 (1986), 207–228.

    MathSciNet  MATH  Google Scholar 

  21. Kondratiev, V., Maz'ya, V. G. & Shubin, M., Discreteness of spectrum and strict positivity criteria for magnetic Schrödinger operators. To appear.

  22. [KoS]Kondratiev, V. &Shubin, M., Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry, inThe Maz'ya Anniversary Collection, Vol. 2 (Rostock, 1998), pp. 185–226. Oper. Theory Adv. Appl., 110. Birkhäuser, Basel, 1999.

    Google Scholar 

  23. [Le]Lewis, J., Uniformly fat sets.Trans. Amer. Math. Soc., 308 (1988), 177–196.

    Article  MATH  MathSciNet  Google Scholar 

  24. [Ma1]Maz'ya, V. G., On the theory of then-dimensional Schrödinger operator.Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 1145–1172 (Russian).

    MATH  MathSciNet  Google Scholar 

  25. [Ma2]—, The (p, l)-capacity, embedding theorems, and the spectrum of a self-adjoint elliptic operator.Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 356–385 (Russian).

    MATH  MathSciNet  Google Scholar 

  26. [Ma3]—,Sobolev Spaces. Springer Ser. Soviet Math, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  27. [MaS]Maz'ya, V. G. &Shaposhnikova, T. O.,Theory of Multipliers in Spaces of Differentiable Functions. Monographs Stud. Math., 23. Pitman, Boston, MA, 1985.

    MATH  Google Scholar 

  28. [MaV]Maz'ya, V. G. &Verbitsky, I. E., Capacitary estimates for fractional integrals, with applications to partial differential equations and Sobolev multipliers.Ark. Mat., 33 (1995), 81–115.

    MathSciNet  MATH  Google Scholar 

  29. [MMP]Marcus, M., Mizel, V. J. &Pinchover, Y., On the best constant for Hardy's inequality inR n.Trans. Amer. Math. Soc. 350 (1998), 3237–3255.

    Article  MathSciNet  MATH  Google Scholar 

  30. [Mo]Molchanov, A., On conditions for the discreteness of spectrum of self-adjoint secondorder differential equations.Trans. Moscow Math. Soc., 2 (1953), 169–200 (Russian).

    MATH  Google Scholar 

  31. [NaS]Naimark, K. &Solomyak, M., Regular and pathological eigenvalue behavior for the equation-λu″=Vu on the semiaxis.J. Funct. Anal., 151 (1997), 504–530.

    Article  MathSciNet  MATH  Google Scholar 

  32. [Ne]Nelson, E.,Topics in Dynamics, I:Flows. Math. Notes. Princeton Univ. Press, Princeton, NJ, 1969.

    Google Scholar 

  33. [RS1]Reed, M. &Simon, B.,Methods of Modern Mathematical Physics, I:Functional Analysis, 2nd edition. Academic Press, New York, 1980.

    Google Scholar 

  34. [RS2]—,Methods of Modern Mathematical Physics, II:Fourier Analysis, Self-Adjointness. Academic Press, New York-London, 1975.

    Google Scholar 

  35. [S1]Schechter, M.,Operator Methods in Quantum Mechanics. North-Holland, New York-Amsterdam, 1981.

    MATH  Google Scholar 

  36. [S2]—,Spectra of Partial Differential Operators, 2nd edition. North-Holland Ser. Appl. Math. Mech., 14, North-Holland, Amsterdam, 1986.

    MATH  Google Scholar 

  37. [S3]—, Weighted norm inequalities for potential operators.Trans. Amer. Math. Soc., 308 (1988), 57–68.

    Article  MATH  MathSciNet  Google Scholar 

  38. [Si]Simon, B., Schrödinger semigroups.Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447–526.

    Article  MATH  MathSciNet  Google Scholar 

  39. [St1]Stein, E. M.,Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser., 30. Princeton Univ. Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  40. [St2]—,Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math. Ser., 43. Princeton Univ. Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  41. [Stu]Sturm, K. T., Schrödinger operators with highly singular, oscillating potentials.Manuscripta Math., 76 (1992), 367–395.

    MATH  MathSciNet  Google Scholar 

  42. [StW]Stein, E. M. &Weiss, G.,Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math. Ser., 32. Princeton Univ. Press, Princeton, NJ, 1971.

    MATH  Google Scholar 

  43. [Ve]Verbitsky, I. E., Nonlinear potentials and trace inequalities, inThe Maz'ya Anniversary Collection, Vol. 2 (Rostock, 1998), pp. 323–343: Oper. Theory Adv. Appl., 110. Birkhäuser, Basel, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The second author was supported in part by NSF Grant DMS-0070623

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maz'ya, V.G., Verbitsky, I.E. The Schrödinger operator on the energy space: boundedness and compactness criteria. Acta Math. 188, 263–302 (2002). https://doi.org/10.1007/BF02392684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392684

Keywords

Navigation