[Be]Benardete D., Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups.Trans. Amer. Math. Soc., 306 (1988), 499–527.
Article
MATH
MathSciNet
Google Scholar
[BG]Bridson, M. &Gersten, S., The optimal isoperimetric inequality for torus bundles over the circle.Quart. J. Math. Oxford Ser. (2), 47 (1996), 1–23.
MathSciNet
MATH
Google Scholar
[BS1]Bieri, R. &Strebel, R., Almost finitely presented soluble groups.Comment. Math. Helv., 53 (1978) 258–278.
MathSciNet
MATH
Google Scholar
[BS2]—, Valuations and finitely presented metabelian groups.Proc. London Math. Soc., 41 (1980), 439–464.
MathSciNet
MATH
Google Scholar
[BW]Block, J. &Weinberger, S., Large scale homology theories and geometry, inGeometric Topology (Athens, GA, 1993), pp. 522–569. AMS/IP Stud. Adv. Math. 2.1. Amer. Math. Soc., Providence, RI, 1997.
Google Scholar
[D]Dioubina, A., Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups.ar Xiv: math. GR/9911099.
[E]Epstein, D. B. A., Cannon, J. W., Holt, D. F., Levy, S. V. F., Paterson, M. S. &Thurston, W. P.,Word Processing in Groups. Jones and Bartlett, Boston, MA, 1992.
MATH
Google Scholar
[FJ1]Farrell, F. T. &Jones, L. E., A topological analogue of Mostow's rigidity theorem.J. Amer. Math. Soc., 2 (1989), 257–370.
Article
MathSciNet
MATH
Google Scholar
[FJ2]—, Compact infrasolvmanifolds are smoothly rigid, inGeometry from the Pacific Rim (Singapore, 1994), pp. 85–97. de Gruyter, Berlin, 1997.
Google Scholar
[FM1]Farb, B. &Mosher L., A rigidity theorem for the solvable Baumslag-Solitar groups.Invent. Math., 131 (1998), 419–451.
Article
MathSciNet
MATH
Google Scholar
[FM2]— Quasi-isometric rigidity for the solvable Baumslag-Solitar groups, II.Invent Math., 137 (1999), 613–649.
Article
MathSciNet
MATH
Google Scholar
[FM3]Farb, B. & Mosher, L., The geometry of surface-by-free groups. In preparation.
[FM4]—, Problems on the geometry of finitely generated solvable groups, inCrystallographic Groups and Their Generalizations (Kortrijk, 1999). Contemp. Math., 262. Amer. Math. Soc., Providence, RI, 2000.
Google Scholar
[FS]Farb, B. &Schwartz, R., The large-scale geometry of Hilbert modular groups.J. Differential Geom., 44 (1996), 435–478.
MathSciNet
MATH
Google Scholar
[Ge1]Gersten, S. M., Quasi-isometry invariance of cohomological dimension.C. R. Acad. Sci. Paris Sér. I. Math., 316 (1993), 411–416.
MATH
MathSciNet
Google Scholar
[Ge2]— Isoperimetric functions of groups and exotic cohomology, inCombinatorial and Geometric Group Theory (Edinburgh, 1993), pp. 87–104. London Math. Soc. Lecture Note Ser., 204. Cambridge Univ. Press, Cambridge, 1995.
Google Scholar
[GH]Ghys, E. &Harpe, P. De La, Infinite groups as geometric objects (after Gromov), inErgodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989), pp. 299–314. Oxford Univ. Press, New York, 1991.
Google Scholar
[Gr1]Gromov, M., Groups of polynomial growth and expanding maps.Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73.
MATH
MathSciNet
Google Scholar
[Gr2]— Asymptotic invariants of infinite groups, inGeometric Group Theory, Vol. 2 (Sussex, 1991), pp. 1–295. London Math. Soc. Lecture Note Ser., 182 Cambridge Univ. Press, Cambridge, 1993.
Google Scholar
[He]Heintze, E., On homogeneous manifolds of negative curvature.Math. Ann., 211 (1974), 23–24.
Article
MATH
MathSciNet
Google Scholar
[Hi]Hinkkanen, A., Uniformly quasisymmetric groups.Proc. London Math. Soc., 51 (1985), 318–338.
MATH
MathSciNet
Google Scholar
[HPS]Hirsch, M., Pugh, C. &Shub, M.,Invariant Manifolds. Lecture Notes in Math., 583. Springer-Verlag, Berlin-New York, 1977.
MATH
Google Scholar
[KK]Kapovich, M. & Kleiner, B., Coarse Alexander duality and duality groups. Preprint.
[Ma]Malcev, A. I., On a class of homogeneous spaces.Izv. Akad. Nauk SSSR Ser. Mat., 13 (1949), 9–32 (Russian); English translation inAmer. Math. Soc. Transl., 39 (1951), 1–33.
MATH
MathSciNet
Google Scholar
[Mi]Milnor, J., A note on curvature and fundamental group.J. Differential Geom., 2 (1968), 1–7.
MATH
MathSciNet
Google Scholar
[Mo1]Mostow, G. D., Factor spaces of solvable groups.Ann. of Math., 60 (1954), 1–27.
Article
MATH
MathSciNet
Google Scholar
[Mo2]—Strong Rigidity of Locally Symmetric Spaces. Ann. of Math. Stud., 78. Princeton Univ. Press, Princeton, NJ, 1973.
MATH
Google Scholar
[MSW]Mosher, L., Sageev, M. & Whyte, K., Quasi-actions on trees. In preparation.
[P1]Pansu, P., Dimension conforme et sphère à l'infini des variété à courbure négative.Ann. Acad. Sci. Fenn. Ser. A I Math., 14 (1989), 177–212.
MATH
MathSciNet
Google Scholar
[P2]—, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.Ann. of Math., 129 (1989), 1–60.
Article
MATH
MathSciNet
Google Scholar
[S]Schwartz, R. E., Quasi-isometric rigidity and Diophantine approximation.Acta Math., 177 (1996), 75–112.
MATH
MathSciNet
Google Scholar
[T]Tukia, P., On quasi-conformal groups.J. Analyse Math., 46 (1986), 318–346.
MATH
MathSciNet
Article
Google Scholar
[W]Witte, D., Topological equivalence of foliations of homogeneous spaces.Trans. Amer. Math. Soc., 317 (1990), 143–166.
Article
MATH
MathSciNet
Google Scholar