Acta Mathematica

, Volume 177, Issue 2, pp 163–224 | Cite as

Local connectivity of some Julia sets containing a circle with an irrational rotation

  • Carsten Lunde Petersen


Local Connectivity Irrational Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Be]Beardon, A. F.,Iteration of Rational Functions Graduate Texts in Math., 132. Springer-Verlag, New York-Berlin, 1991.Google Scholar
  2. [BH]Branner, B. &Hubbard, J. H., The iteration of cubic polynomials, Part II: Patterns and parapatterns.Acta Math., 169 (1992), 229–325.MathSciNetGoogle Scholar
  3. [CG]Carleson, L. &Gamelin, T. W.,Complex Dynamics, Universitext: Tracts in Mathematics Springer-Verlag, New York, 1993.Google Scholar
  4. [Do]Douady, A., Disques de Siegel et anneaux de Herman.Sém. Bourbaki, 39ème année, 1986/87, no 677.Google Scholar
  5. [He]Herman, M. R., Conjugaison quasi symmetrique des homéomorphismes analytiques du cercle a des rotations. Preliminary manuscript.Google Scholar
  6. [Hu]Hubbard, J. H., Local connectivity of Julia sets and bifurcation loci: three theorems by Yoccoz, inTopological Methods in Modern Mathematics (Stony Brook, NY 1991), pp. 467–511. Publish or Perish, Houston, TX, 1993.Google Scholar
  7. [Ke]Keller, K., Symbolic dynamics for angle-doubling on the circle III. Sturmian sequences and the the quadratic map.Ergodic Theory Dynamical Systems, 14, (1994), 787–805.MATHGoogle Scholar
  8. [LV]Lehto, O. &Virtanen, K. I.,Quasiconformal Mappings in the Plane, 2nd edition Grundlehren Math. Wiss. 126. Springer-Verlag, New York-Berlin, 1973.Google Scholar
  9. [Mc]McMullen, C. T., Self-similarity of Siegel disks and Hausdorff dimension of Julia sets. Manuscript, Univ. of California, Berkeley, CA, October 1995.Google Scholar
  10. [Si]Siegel, L., Iteration of analytic functions.Ann. of Math. (2), 43 (1942), 607–612.CrossRefMATHMathSciNetGoogle Scholar
  11. [St]Steinmetz, N.,Rational Iteration. Complex Analytic Dynamical Systems. de Gruyter Stud. Math., 16, de Gruyter, Berlin, 1993.Google Scholar
  12. [Su]Sullivan, D., Bounds, quadratic differentials, and renormalization conjectures, inAmerican Mathematical Society Centennial Publications, Vol. II (Providence, RI, 1988), pp. 417–466. Amer. Math. Soc., Providence, RI, 1992.Google Scholar
  13. [Sw]Świątec, G., Rational rotation numbers for maps of the circle.Comm. Math. Phys., 119 (1988), 109–128.CrossRefMathSciNetGoogle Scholar
  14. [TY]Tan, L. & Yin, Y., Local connectivity of the Julia set for geometrically finite rational maps. Preprint, École Normale Supérieure de Lyon, UMPA-94-no 121, 1994. To appear inActa Math. Sinica.Google Scholar
  15. [Ya]Yampolsky, M., Complex bounds for critical circle maps. Preprint, SUNY, StonyBrook, Institute for Mathematical Sciences #1995/12.Google Scholar
  16. [Yo1]Yoccoz, J.-C., Il n'y a pas de contre-exemple de Denjoy analytique.C. R. Acad. Sci. Paris Sér. I Math., 298 (1984), 141–144.MATHMathSciNetGoogle Scholar
  17. [Yo2]Yoccoz, J.-C. Structure des orbites des homéomorphismes analytiques possedant un point critique. Manuscript.Google Scholar

Copyright information

© Institut Mittag-Leffler 1996

Authors and Affiliations

  • Carsten Lunde Petersen
    • 1
  1. 1.IMFUARoskilde UniversityRoskildeDenmark

Personalised recommendations