Skip to main content
Log in

Values of Brownian intersection exponents, I: Half-plane exponents

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ahlfors, L. V.,Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York, 1973.

    Google Scholar 

  2. Aizenman, M., The geometry of critical percolation and conformal invariance, inSTATPHYS 19 (Xiamen, 1995), pp. 104–120. World Sci. Publishing, River Edge, NJ, 1996.

    Google Scholar 

  3. Aizenman, M., Duplantier, B. &Aharony, A., Path crossing exponents and the external perimeter in 2D percolation.Phys. Rev. Lett., 83 (1999), 1359–1362.

    Article  Google Scholar 

  4. Belavin, A. A., Polyakov, A. M. &Zamolodchikov, A. B., Infinite conformal symmetry in two-dimensional quantum field theory.Nuclear Phys. B, 241 (1984), 333–380.

    Article  MathSciNet  Google Scholar 

  5. Burdzy, K. &Lawler, G. F., Non-intersection exponents for Brownian paths. Part I: Existence and an invariance principle.Probab. Theory Related Fields, 84 (1990), 393–410.

    Article  MathSciNet  Google Scholar 

  6. Cardy, J. L., Conformal invariance and surface critical behavior.Nuclear Phys. B, 240 (1984), 514–532.

    Article  Google Scholar 

  7. —, Critical percolation in finite geometries.J. Phys. A, 25 (1992), L201-L206.

    Article  MATH  MathSciNet  Google Scholar 

  8. —, The number of incipient spanning clusters in two-dimensional percolation.J. Phys. A, 31 (1998), L105.

    Article  MATH  Google Scholar 

  9. Cranston, M. &Mountford, T., An extension of a result of Burdzy and Lawler.Probab. Theory Related Fields, 89 (1991), 487–502.

    Article  MathSciNet  Google Scholar 

  10. Duplantier, B., Loop-erased self-avoiding walks in two dimensions: Exact critical exponents and winding numbers.Phys. A, 191 (1992), 516–522.

    Article  Google Scholar 

  11. —, Random walks and quantum gravity in two dimensions.Phys. Rev. Lett., 81 (1998), 5489–5492.

    Article  MATH  MathSciNet  Google Scholar 

  12. Duplantier, B. &Kwon, K.-H., Conformal invariance and intersection of random walks.Phys. Rev. Lett., 61 (1988), 2514–2517.

    Article  Google Scholar 

  13. Duplantier, B. &Saleur, H., Exact determination of the percolation hull exponent in two dimensions.Phys. Rev. Lett., 58 (1987), 2325–2328.

    Article  MathSciNet  Google Scholar 

  14. Grimmett, G.,Percolation. Springer-Verlag, New York, 1989.

    Google Scholar 

  15. Ikeda, N. &Watanabe, S.,Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland Math. Library, 24. North-Holland, Amsterdam, 1989.

    Google Scholar 

  16. Kenyon, R., Conformal invariance of domino tiling.Ann. Probab., 28 (2000), 759–795.

    Article  MATH  MathSciNet  Google Scholar 

  17. —, The asymptotic determinant of the discrete Laplacian.Acta Math., 185 (2000), 239–286.

    MATH  MathSciNet  Google Scholar 

  18. —, Long-range properties of spanning trees. Probabilistic techniques in equilibrium and nonequilibrium statistical physics.J. Math. Phys., 41 (2000), 1338–1363.

    Article  MATH  MathSciNet  Google Scholar 

  19. Langlands, R., Pouliot, P. &Saint-Aubin, Y., Conformal invariance in two-dimensional percolation.Bull. Amer. Math. Soc. (N.S.), 30 (1994), 1–61.

    MathSciNet  Google Scholar 

  20. Lawler, G. F.,Intersections of Random Walks. Birkhäuser, Boston, Boston, MA, 1991.

    Google Scholar 

  21. —, Hausdorff dimension of cut points for Brownian motion.Electron. J. Probab., 1:2 (1996), 1–20 (electronic).

    MathSciNet  Google Scholar 

  22. —, The dimension of the frontier of planar Brownian motion.Electron. Comm. Probab., 1:5 (1996), 29–47 (electronic).

    MATH  MathSciNet  Google Scholar 

  23. Lawler, G. F., The frontier of a Brownian path is multifractal. Preprint, 1997.

  24. Lawler, G. F. &Puckette, E. E., The intersection exponent for simple random walk.Combin. Probab. Comput., 9 (2000), 441–464.

    Article  MathSciNet  Google Scholar 

  25. Lawler, G. F., Schramm, O. &Werner, W., Values of Brownian intersection exponents, II: Plane exponents.Acta Math., 187 (2001), 275–308. http://arxiv.org/abs/math.PR/0003156

    MathSciNet  Google Scholar 

  26. Lawler, G. F., Schramm, O. & Werner, W., Values of Brownian intersection exponents, III: Two-sided exponents. To appear inAnn. Inst. H. Poincaré Probab. Statist. http://arxiv.org/abs/math.PR/0005294.

  27. Lawler, G. F., Schramm, O. & Werner, W., Analyticity of intersection exponents for planar Brownian motion. To appear inActa Math., 188 (2002). http://arxiv.org/abs/math.PR/0005295.

  28. Lawler, G. F. &Werner, W., Intersection exponents for planar Brownian motion.Ann. Probab., 27 (1999), 1601–1642.

    Article  MathSciNet  Google Scholar 

  29. ——, Universality for conformally invariant intersection exponents.J. Eur. Math. Soc. (JEMS), 2 (2000), 291–328.

    Article  MathSciNet  Google Scholar 

  30. Lebedev, N. N.,Special Functions and Their Applications, Dover, New York, 1972.

    Google Scholar 

  31. Lehto, O. &Virtanen, K. I.,Quasiconformal Mappings in the Plane, 2nd edition. Grundlehren Math. Wiss., 126. Springer-Verlag, New York-Heidelberg, 1973.

    Google Scholar 

  32. Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I.Math. Ann., 89 (1923), 103–121.

    Article  MATH  MathSciNet  Google Scholar 

  33. Madras, N. &Slade, G.,The Self-Avoiding Walk. Birkhäuser, Boston, Boston, MA, 1993.

    Google Scholar 

  34. Majumdar, S. N., Exact fractal dimension of the loop-erased random walk in two dimensions.Phys. Rev. Lett., 68 (1992), 2329–2331.

    Article  Google Scholar 

  35. Mandelbrot, B. B.,The Fractal Geometry of Nature. Freeman, San Francisco, CA, 1982.

    Google Scholar 

  36. Marshall, D. E. & Rohde, S., The Loewner differential equation and slit mappings. Preprint.

  37. Pommerenke, Ch., On the Loewner differential equation.Michigan Math. J., 13 (1966), 435–443.

    Article  MATH  MathSciNet  Google Scholar 

  38. —,Boundary Behaviour of Conformal Maps. Grundlehren Math. Wiss., 299. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  39. Revuz, D. &Yor, M.,Continuous Martingales and Brownian Motion. Grundlehren Math. Wiss., 293. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  40. Rohde, S. & Schramm, O., Basic properties of SLE. Preprint.

  41. Rudin, W.,Real and Complex Analysis, 3rd edition, McGraw-Hill, New York, 1987.

    Google Scholar 

  42. Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees.Israel J. Math., 118 (2000), 221–288.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawler, G.F., Schramm, O. & Werner, W. Values of Brownian intersection exponents, I: Half-plane exponents. Acta Math. 187, 237–273 (2001). https://doi.org/10.1007/BF02392618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392618

Navigation