Acta Mathematica

, Volume 187, Issue 2, pp 191–212 | Cite as

Local solvability for a class of differential complexes

  • Paulo D. Cordaro
  • Jorge G. Hounie


Local Solvability Differential Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Br]
    Bredon, G. E.,Sheaf Theory, 2nd edition. Graduate Texts in Math., 170. Springer-Verlag, New York, 1997.Google Scholar
  2. [BT]
    Baouendi, M. S. &Treves, F., A property of the functions and distributions annihilated by a locally integrable system of complex vector fields.Ann. of Math. (2), 113 (1981), 387–421.CrossRefMathSciNetGoogle Scholar
  3. [ChT]
    Chanillo, S. &Treves, F., Local exactness in a class of differential complexes.J. Amer. Math. Soc., 10 (1997), 393–426.CrossRefMathSciNetGoogle Scholar
  4. [CH1]
    Cordaro, P. D. &Hounie, J., On local solvability of underdetermined systems of vector fields.Amer. J. Math., 112 (1990), 243–270.MathSciNetGoogle Scholar
  5. [CH2]
    —, Local solvability for top degree forms in a class of systems of vector fields.Amer. J. Math., 121 (1999), 487–495.MathSciNetGoogle Scholar
  6. [CT1]
    Cordaro, P. D. &Treves, F., Homology and cohomology in hypo-analytic structures of the hypersurface type.J. Geom. Anal., 1 (1991), 39–70.MathSciNetGoogle Scholar
  7. [CT2]
    —,Hyperfunctions on Hypo-Analytic Manifolds. Ann. of Math. Stud., 136. Princeton Univ. Press, Princeton, NJ, 1994.Google Scholar
  8. [CT3]
    —, Necessary and sufficient conditions for the local solvability in hyperfunctions of a class of systems of complex vector fields.Invent. Math., 120 (1995), 339–360.CrossRefMathSciNetGoogle Scholar
  9. [H]
    Hörmander, L.,The Analysis of Linear Partial Differential Operators, IV. Fourier Integral Operators. Grundlehren Math. Wiss., 275, Springer-Verlag, Berlin, 1985.Google Scholar
  10. [MT]
    Mendoza, G. A. &Treves, F., Local solvability in a class of overdetermined systems of linear PDE.Duke Math. J., 63 (1991), 355–377.CrossRefMathSciNetGoogle Scholar
  11. [NT]
    Nirenberg, L. &Treves, F., Solvability of a first order linear partial differential equation.Comm. Pure Appl. Math., 16 (1963), 331–351.MathSciNetGoogle Scholar
  12. [S]
    Stein, E. M.,Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser., 30. Princeton Univ. Press, Princeton, NJ, 1970.Google Scholar
  13. [T1]
    Treves, F., On the local solvability and local integrability of systems of vector fields.Acta Math., 151 (1983), 1–38.MATHMathSciNetGoogle Scholar
  14. [T2]
    —,Hypo-Analytic Structures. Local Theory. Princeton Math. Ser., 40, Princeton Univ. Press, Princeton, NJ, 1992.Google Scholar

Copyright information

© Institut Mittag-Leffler 2001

Authors and Affiliations

  • Paulo D. Cordaro
    • 1
  • Jorge G. Hounie
    • 2
  1. 1.Department of Mathematics Institute of Mathematics and Statistics (IME)University of São PauloSão PauloBrazil
  2. 2.Department of MathematicsFederal University of São CarlosSão CarlosBrazil

Personalised recommendations