Skip to main content
Log in

Improved upper bounds for approximation by zonotopes

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alon, N. &Spencer, J.,The Probabilistic Method, John Wiley & Sons, New York, 1992.

    Google Scholar 

  2. Beck, J., Some upper bounds in the theory of irregularities of distributions.Acta Arith., 43 (1984), 115–130.

    MATH  MathSciNet  Google Scholar 

  3. Betke, U. &McMullen, P., Estimating the sizes of convex by projections.J. London Math. Soc. 27 (1983), 525–538.

    MathSciNet  Google Scholar 

  4. Bourgain, J. &Lindenstrauss, J., Distribution of points on the sphere and approximation by zonotopes.Israel J. Math., 64 (1988), 25–31.

    MathSciNet  Google Scholar 

  5. — Approximating the ball by a Minkowski sum of segments with equal length.Discrete Comput. Geom., 9 (1993), 131–144.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourgain, J., Lindenstrauss, J. &Milman, V., Approximation of zonoids by zonotopes.Acta Math., 162 (1989), 73–141.

    MathSciNet  Google Scholar 

  7. Chazelle, B., Cutting hyperplanes for divide-and-conquer.Discrete Comput. Geom., 9 (1993), 145–158

    Article  MATH  MathSciNet  Google Scholar 

  8. Chazelle, B. Lecture notes on discrepancy and derandomization. Unpublished.

  9. Chazelle, B. &Friedman, J., A determilistic view of random sampling and its use in geometry.Combinatorica, 10 (1990), 229–249.

    Article  MathSciNet  Google Scholar 

  10. Chazelle, B. &Welzl, E., Quasi-optimal range searching in spaces of finite VC-dimension.Discrete Comput. Geom., 4 (1989), 467–489.

    Article  MathSciNet  Google Scholar 

  11. Edelsbrunner, H.,Algorithms in Combinatorial Geometry. EATCS Monogr. Theoret. Comput. Sci., 10. Springer-Verlag, Berlin-New York, 1987.

    Google Scholar 

  12. Linhart, J., Approximation of a ball by zonotopes using uniform distribution on the sphere.Arch. Math., 53 (1989), 82–86.

    Article  MATH  MathSciNet  Google Scholar 

  13. Matoušek, J., Cutting hyperplane arrangements.Discrete Comput. Geom., 6 (1991), 385–406.

    MathSciNet  Google Scholar 

  14. —, Tight upper bounds for the discrepancy of halfspaces.Discrete Comput. Geom., 13 (1995), 593–601.

    MathSciNet  Google Scholar 

  15. —, Effecient partition trees.Discrete Comput. Geom., 8 (1992), 315–334.

    Article  MathSciNet  Google Scholar 

  16. Matoušek, J. &Spencer, J., Discrepancy in arithmetic progressions.J. Amer. Math. Soc., 9 (1996), 195–204.

    Article  MathSciNet  Google Scholar 

  17. Spencer, J., Six standard deviations suffice.Trans. Amer. Math. Soc., 289 (1985), 679–706.

    Article  MATH  MathSciNet  Google Scholar 

  18. Wagner, G., On a new method for constructing good point sets on spheres.Discrete Comput. Geom., 9 (1993), 111–129.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by Grants GAČR 201/95/2167 and 0194/1996, and Charles University Grants 351, 361/1995 and 193, 194/1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matoušek, J. Improved upper bounds for approximation by zonotopes. Acta Math. 177, 55–73 (1996). https://doi.org/10.1007/BF02392598

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392598

Navigation