Acta Mathematica

, Volume 157, Issue 1, pp 1–22 | Cite as

The surfaceC−C on Jacobi varieties and 2nd order theta functions

  • Gerald E. Welters


Theta Function Jacobi Variety Order Theta Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Andreotti, A. &Mayer, A. L., On period relations for abelian integrals on algebraic curves.Ann. Scuola Norm. Sup. Pisa, 21 (1967), 189–238.MathSciNetMATHGoogle Scholar
  2. [2]
    Fay, J., On the even-order vanishing of Jacobian theta functions.Duke Math. J., 51 (1984), 109–132.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    Fulton, W. &Lazarsfeld, R., On the connectedness of degeneracy loci and special divisors.Acta Math., 146 (1981), 271–283.MathSciNetMATHGoogle Scholar
  4. [4]
    van Geemen, B. & van der Geer, G.,Kummer varieties and the moduli spaces of abelian varieties. Preprint no 308, University of Utrecht, 1983.Google Scholar
  5. [5]
    Green, M., Quadrics of rank four in the ideal of a canonical curve.Invent. Math., 75 (1984), 85–104.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Griffiths, P. A. &Harris, J., On the variety of special linear systems on a general algebraic curve.Duke Math. J., 47 (1980), 233–272.CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    Grothendieck, A., Les Schémes de Hilbert. Séminaire Bourbaki no 221 (1960/61).Google Scholar
  8. [8]
    Gunning, R. C., Riemann surfaces and their associated Wirtinger varieties.Bull. Amer. Math. Soc., 11 (1984), 287–316.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Kempf, G., On the geometry of a theorem of Riemann.Ann. of Math., 98 (1973), 178–185.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    Martens, H. H., A new proof of Torelli’s theorem.Ann. of Math., 78 (1963), 107–111.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Mumford, D.,Abelian varieties. Tata Institute, Oxford Univ. Press, Bombay, 1974.MATHGoogle Scholar
  12. [12]
    Mumford, D., Prym varieties I.Contributions to Analysis. Acad. Press, 1974.Google Scholar
  13. [13]
    —,Tata Lectures on Theta II. Progress in Math., no 43. Birkhäuser, Basel, 1984.MATHGoogle Scholar
  14. [14]
    Shokurov, V. V. Distinguishing Prymians from Jacobians.Invent. Math., 65 (1981), 209–219.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    Teixidor, M., For which Jacobi varieties is Sing Θ reducible?J. Reine Angew. Math., 354 (1984), 141–149.MathSciNetMATHGoogle Scholar

Copyright information

© Almqvist & Wiksell 1986

Authors and Affiliations

  • Gerald E. Welters
    • 1
  1. 1.Universidad de BarcelonaBarcelonaSpain

Personalised recommendations