Advertisement

Acta Mathematica

, Volume 181, Issue 2, pp 159–228 | Cite as

Subalgebras ofC *-algebras III: Multivariable operator theory

  • Whilliam Arveson
Article

Keywords

Operator Theory Multivariable Operator Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agler, J., The Arveson extension theorem and coanalytic models.Integral Equations Operator Theory, 5 (1982), 608–631.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    —, Hypercontractions and subnormality.J. Operator Theory, 13 (1985), 203–217.MATHMathSciNetGoogle Scholar
  3. [3]
    Arveson, W., Subalgebras ofC *-algebras,Acta Math., 123 (1969), 141–224.MATHMathSciNetGoogle Scholar
  4. [4]
    —, Subalgebras ofC *-Algebras, II.Acta Math., 128 (1972), 271–308.MATHMathSciNetGoogle Scholar
  5. [5]
    —,An Invitation to C *-Algebras. Graduate Texts in Math., 39, Springer-Verlag, New York-Heidelberg, 1976.MATHGoogle Scholar
  6. [6]
    —,C *-algebras associated with sets of semigroups of operators.Internat. J. Math., 2 (1991), 235–255.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    —, MinimalE 0-semigroups, inOperator Algebras and Their Applications (Waterloo, ON, 1994/95), pp. 1–12. Fields Inst. Commun., 13. Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  8. [8]
    —, The index of a quantum dynamical semigroup.J. Funct. Anal., 146 (1997), 557–588.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Arveson, W., On the index and dilations of completely positive semigroups. To appear inInternat. J. Math. Google Scholar
  10. [10]
    —, PureE 0-semigroups and absorbing states.Comm. Math. Phys., 187 (1997), 19–43.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Athavale, A., On the intertwining of joint isometries.J. Operator Theory, 23 (1990), 339–350.MATHMathSciNetGoogle Scholar
  12. [12]
    —, Model theory on the unit ball of Cn.J. Operator Theory, 27 (1992), 347–358.MATHMathSciNetGoogle Scholar
  13. [13]
    Attele, K. R. M. &Lubin, A. R., Dilations and commutant lifting for jointly isometric operators—a geometric approach.J. Funct. Anal. 140 (1996), 300–311.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    Bhat, B. V. R., An index theory for quantum dynamical semigroups.Trans. Amer. Math. Soc., 348 (1996), 561–583.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    Bunce, J. W., Models forn-tuples of noncommuting operators.J. Funct. Anal., 57 (1984). 21–30.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Courn, L. A., Singular integral operators and Toeplitz operators on odd spheres.Indiana Univ. Math. J., 23 (1973), 433–439.CrossRefMathSciNetGoogle Scholar
  17. [17]
    Curto, R. &Vasilescu, F.-H., Automorphism invariance of the operator-valued Poisson transform.Acta Sci. Math. (Szeged), 57 (1993), 65–78.MathSciNetMATHGoogle Scholar
  18. [18]
    Davidson, K. R. & Pitts, D., Invariant subspaces and hyper-reflexivity for free semigroup algebras. Preprint.Google Scholar
  19. [19]
    Davidson, K. R. & Pitts, D. The algebraic structure of non-commutative analytic Toeplitz algebras. Preprint.Google Scholar
  20. [20]
    Drury, S., A generalization of von Neumann's inequality to the complex ball.Proc. Amer. Math. Soc., 68 (1978), 300–304.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Frazho, A. E., Models for noncommuting operators.J. Funct. Anal., 48 (1982), 1–11.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    Halmos, P. R.,A Hilbert Space Problem Book, Van Nostrand, Princeton, NJ-Toronto, ON-London, 1967.MATHGoogle Scholar
  23. [23]
    Hamana, M., Injective envelopes ofC *-algebras.J. Math. Soc. Japan, 31 (1979), 181–197.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    —, Injective envelopes of operator systems.Publ. Res. Inst. Math. Sci., 15 (1979), 773–785.MATHMathSciNetGoogle Scholar
  25. [25]
    Müller, V. &Vasilescu, F.-H., Standard models for some commuting multioperators.Proc. Amer. Math. Soc., 117 (1993), 979–989.CrossRefMathSciNetMATHGoogle Scholar
  26. [26]
    Paulsen, V.,Completely Bounded Maps and Dilations, Wiley, New York, 1986.MATHGoogle Scholar
  27. [27]
    Pisier, G.,Similarity Problems and Completely Bounded Maps. Lecture Notes in Math., 1618, Springer-Verlag, Berlin, 1995.MATHGoogle Scholar
  28. [28]
    Popescu, G., Models for infinite sequeces of noncommuting operators.Acta Sci. Math. (Szeged) 53 (1989), 355–368.MATHMathSciNetGoogle Scholar
  29. [29]
    —, Isometric dilations for infinite sequences of noncommuting operators.Trans. Amer. Math. Soc., 316 (1989), 523–536.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    —, von Neumann inequality for (B(H) n)1 Math. Scand. 68 (1991), 292–304.MATHMathSciNetGoogle Scholar
  31. [31]
    —, On intertwining dilations for sequences of noncommuting operators.J. Math. Anal. Appl., 167 (1992), 382–402.CrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    —, Functional calculus for noncommuting operators.Michigan Math. J., 42 (1995), 345–356.CrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    —, Multi-analytic operators on Fock space.Math. Ann., 303 (1995), 31–46.CrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    —, Noncommutative disc algebras and their representations.Proc. Amer. Math. Soc., 124 (1996), 2137–2148.CrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    Popescu, G., Poisson transforms on someC *-algebras generated by isometries. Preprint, 1995.Google Scholar
  36. [36]
    Rudin, W.,Principles of Mathematical Analysis, 3rd edition. McGraw-Hill, New York-Auckland-Düsseldorf, 1976.MATHGoogle Scholar
  37. [37]
    —,Function Theory in the Unit Ball of C n. Grundlehren Math. Wiss., 241. Springer-Verlag, New York-Berlin, 1980.Google Scholar
  38. [38]
    —,New Constructions of Functions Holomorphic in the Unit Ball of C n. CBMS Regional Conf. Ser. in Math., 63 Amer. Math. Soc., Providence, RI, 1986.Google Scholar
  39. [39]
    Sarason, D., On spectral sets having connected complement.Acta Sci. Math. (Szeged) 26 (1965), 289–299.MATHMathSciNetGoogle Scholar
  40. [40]
    Segal, I.E., Tensor algebras over Hilbert spaces, I.Trans. Amer. Math. Soc., 81 (1956). 106–134.CrossRefMATHMathSciNetGoogle Scholar
  41. [41]
    Segal, I.E. Tensor algebras over Hilbert spaces, II.Ann. of Math., 63 (1956), 160–175.Google Scholar
  42. [42]
    Selegue, D. Ph.D. dissertation, Berkeley, 1997.Google Scholar
  43. [43]
    Sz.-Nagy, B. &Foias, C.,Harmonic Analysis of Operators on Hilbert Space, American Elsevier, New York, 1970.Google Scholar
  44. [44]
    Vasilescu, F.-H., An operator-valued Poisson kernel.J. Funct. Anal., 110 (1992), 47–72.CrossRefMATHMathSciNetGoogle Scholar
  45. [45]
    —, Operator-valued Poisson kernels and standard models in several variables, inAlgebraic Methods in Operator Theory (R. Curto and P. Jorgensen, ed.), pp. 37–46. Birkhäuser Boston, Boston, MA, 1994.Google Scholar

Copyright information

© Institut Mittag-Leffler 1998

Authors and Affiliations

  • Whilliam Arveson
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations