Acta Mathematica

, Volume 181, Issue 2, pp 159–228 | Cite as

Subalgebras ofC *-algebras III: Multivariable operator theory

  • Whilliam Arveson
Article

Keywords

Operator Theory Multivariable Operator Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agler, J., The Arveson extension theorem and coanalytic models.Integral Equations Operator Theory, 5 (1982), 608–631.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    —, Hypercontractions and subnormality.J. Operator Theory, 13 (1985), 203–217.MATHMathSciNetGoogle Scholar
  3. [3]
    Arveson, W., Subalgebras ofC *-algebras,Acta Math., 123 (1969), 141–224.MATHMathSciNetGoogle Scholar
  4. [4]
    —, Subalgebras ofC *-Algebras, II.Acta Math., 128 (1972), 271–308.MATHMathSciNetGoogle Scholar
  5. [5]
    —,An Invitation to C *-Algebras. Graduate Texts in Math., 39, Springer-Verlag, New York-Heidelberg, 1976.MATHGoogle Scholar
  6. [6]
    —,C *-algebras associated with sets of semigroups of operators.Internat. J. Math., 2 (1991), 235–255.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    —, MinimalE 0-semigroups, inOperator Algebras and Their Applications (Waterloo, ON, 1994/95), pp. 1–12. Fields Inst. Commun., 13. Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  8. [8]
    —, The index of a quantum dynamical semigroup.J. Funct. Anal., 146 (1997), 557–588.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Arveson, W., On the index and dilations of completely positive semigroups. To appear inInternat. J. Math. Google Scholar
  10. [10]
    —, PureE 0-semigroups and absorbing states.Comm. Math. Phys., 187 (1997), 19–43.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Athavale, A., On the intertwining of joint isometries.J. Operator Theory, 23 (1990), 339–350.MATHMathSciNetGoogle Scholar
  12. [12]
    —, Model theory on the unit ball of Cn.J. Operator Theory, 27 (1992), 347–358.MATHMathSciNetGoogle Scholar
  13. [13]
    Attele, K. R. M. &Lubin, A. R., Dilations and commutant lifting for jointly isometric operators—a geometric approach.J. Funct. Anal. 140 (1996), 300–311.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    Bhat, B. V. R., An index theory for quantum dynamical semigroups.Trans. Amer. Math. Soc., 348 (1996), 561–583.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    Bunce, J. W., Models forn-tuples of noncommuting operators.J. Funct. Anal., 57 (1984). 21–30.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Courn, L. A., Singular integral operators and Toeplitz operators on odd spheres.Indiana Univ. Math. J., 23 (1973), 433–439.CrossRefMathSciNetGoogle Scholar
  17. [17]
    Curto, R. &Vasilescu, F.-H., Automorphism invariance of the operator-valued Poisson transform.Acta Sci. Math. (Szeged), 57 (1993), 65–78.MathSciNetMATHGoogle Scholar
  18. [18]
    Davidson, K. R. & Pitts, D., Invariant subspaces and hyper-reflexivity for free semigroup algebras. Preprint.Google Scholar
  19. [19]
    Davidson, K. R. & Pitts, D. The algebraic structure of non-commutative analytic Toeplitz algebras. Preprint.Google Scholar
  20. [20]
    Drury, S., A generalization of von Neumann's inequality to the complex ball.Proc. Amer. Math. Soc., 68 (1978), 300–304.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Frazho, A. E., Models for noncommuting operators.J. Funct. Anal., 48 (1982), 1–11.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    Halmos, P. R.,A Hilbert Space Problem Book, Van Nostrand, Princeton, NJ-Toronto, ON-London, 1967.MATHGoogle Scholar
  23. [23]
    Hamana, M., Injective envelopes ofC *-algebras.J. Math. Soc. Japan, 31 (1979), 181–197.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    —, Injective envelopes of operator systems.Publ. Res. Inst. Math. Sci., 15 (1979), 773–785.MATHMathSciNetGoogle Scholar
  25. [25]
    Müller, V. &Vasilescu, F.-H., Standard models for some commuting multioperators.Proc. Amer. Math. Soc., 117 (1993), 979–989.CrossRefMathSciNetMATHGoogle Scholar
  26. [26]
    Paulsen, V.,Completely Bounded Maps and Dilations, Wiley, New York, 1986.MATHGoogle Scholar
  27. [27]
    Pisier, G.,Similarity Problems and Completely Bounded Maps. Lecture Notes in Math., 1618, Springer-Verlag, Berlin, 1995.MATHGoogle Scholar
  28. [28]
    Popescu, G., Models for infinite sequeces of noncommuting operators.Acta Sci. Math. (Szeged) 53 (1989), 355–368.MATHMathSciNetGoogle Scholar
  29. [29]
    —, Isometric dilations for infinite sequences of noncommuting operators.Trans. Amer. Math. Soc., 316 (1989), 523–536.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    —, von Neumann inequality for (B(H) n)1 Math. Scand. 68 (1991), 292–304.MATHMathSciNetGoogle Scholar
  31. [31]
    —, On intertwining dilations for sequences of noncommuting operators.J. Math. Anal. Appl., 167 (1992), 382–402.CrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    —, Functional calculus for noncommuting operators.Michigan Math. J., 42 (1995), 345–356.CrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    —, Multi-analytic operators on Fock space.Math. Ann., 303 (1995), 31–46.CrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    —, Noncommutative disc algebras and their representations.Proc. Amer. Math. Soc., 124 (1996), 2137–2148.CrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    Popescu, G., Poisson transforms on someC *-algebras generated by isometries. Preprint, 1995.Google Scholar
  36. [36]
    Rudin, W.,Principles of Mathematical Analysis, 3rd edition. McGraw-Hill, New York-Auckland-Düsseldorf, 1976.MATHGoogle Scholar
  37. [37]
    —,Function Theory in the Unit Ball of C n. Grundlehren Math. Wiss., 241. Springer-Verlag, New York-Berlin, 1980.Google Scholar
  38. [38]
    —,New Constructions of Functions Holomorphic in the Unit Ball of C n. CBMS Regional Conf. Ser. in Math., 63 Amer. Math. Soc., Providence, RI, 1986.Google Scholar
  39. [39]
    Sarason, D., On spectral sets having connected complement.Acta Sci. Math. (Szeged) 26 (1965), 289–299.MATHMathSciNetGoogle Scholar
  40. [40]
    Segal, I.E., Tensor algebras over Hilbert spaces, I.Trans. Amer. Math. Soc., 81 (1956). 106–134.CrossRefMATHMathSciNetGoogle Scholar
  41. [41]
    Segal, I.E. Tensor algebras over Hilbert spaces, II.Ann. of Math., 63 (1956), 160–175.Google Scholar
  42. [42]
    Selegue, D. Ph.D. dissertation, Berkeley, 1997.Google Scholar
  43. [43]
    Sz.-Nagy, B. &Foias, C.,Harmonic Analysis of Operators on Hilbert Space, American Elsevier, New York, 1970.Google Scholar
  44. [44]
    Vasilescu, F.-H., An operator-valued Poisson kernel.J. Funct. Anal., 110 (1992), 47–72.CrossRefMATHMathSciNetGoogle Scholar
  45. [45]
    —, Operator-valued Poisson kernels and standard models in several variables, inAlgebraic Methods in Operator Theory (R. Curto and P. Jorgensen, ed.), pp. 37–46. Birkhäuser Boston, Boston, MA, 1994.Google Scholar

Copyright information

© Institut Mittag-Leffler 1998

Authors and Affiliations

  • Whilliam Arveson
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations