Advertisement

Acta Mathematica

, Volume 182, Issue 2, pp 283–300 | Cite as

Fundamental solutions of real homogeneous cubic operators of principal type in three dimensions

  • Peter Wagner
Article

Keywords

Fundamental Solution Principal Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Atiyah, M. F., Bott, R. &Gårding, L., Lacunas for hyperbolic differential operators with constant coefficients, I.Acta Math., 124 (1970), 109–189.MathSciNetGoogle Scholar
  2. [2]
    Borovikov, V. A., Fundamental solutions of linear partial differential equations with constant coefficients.Trudy Moskov. Mat. Obshch., 8 (1959), 199–257 (Russian); English translation inAmer. Math. Soc. Transl. Ser. 2, 25 (1963), 11–66.MATHMathSciNetGoogle Scholar
  3. [3]
    Brieskorn, E. &Knörrer, H.,Ebene algebraische Kurven. Birkhäuser, Basel, 1981; English translation:Plane Algebraic Curves. Birkhäuser, Basel, 1986.Google Scholar
  4. [4]
    Burau, W.,Algebraische Kurven und Flächen, Vol. I. de Gruyter, Berlin, 1962.Google Scholar
  5. [5]
    Fredholm, I., Sur les équations de l'équilibre d'un corps solide élastique.Acta Math., 23 (1900), 1–42.Google Scholar
  6. [6]
    Gårding, L.,Mathematics and Mathematicians: Mathematics in Sweden before 1950. Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  7. [7]
    Gel'fand, I. M. &Shilov, G. E.,Generalized Functions, I:Properties and Operations. Academic Press, New York, 1964.Google Scholar
  8. [8]
    Gradshteyn, I. S. &Ryzhik, I. M.,Tables of Integrals, Series, and Products. Academic Press, New York-London-Toronto, 1980.Google Scholar
  9. [9]
    Griffiths, P. &Harris, J.,Principles of Algebraic Geometry. Wiley, New York, 1978.Google Scholar
  10. [10]
    Gröbner, W. &Hofreiter, N.,Integraltafel, Teil 2: Bestimmte Integrale, 5th edition. Springer-Verlag, Vienna, 1973.Google Scholar
  11. [11]
    Hörmander, L.,The Analysis of Linear Partial Differential Operators, Vol. I. Grundlehren Math. Wiss., 256. Springer-Verlag, Berlin, 1983.Google Scholar
  12. [12]
    Hörmander, L.,The Analysis of Linear Partial Differential Operators, Vol. II. Grundlehren Math. Wiss., 257. Springer-Verlag, Berlin, 1983.Google Scholar
  13. [13]
    Horváth, J.,Topological Vector Spaces and Distributions, Vol. I. Addison-Wesley, Reading, MA, 1966.Google Scholar
  14. [14]
    Kaplansky, I.,Fields and Rings, 2nd edition. Univ. Chicago Press, Chicago, 1972.Google Scholar
  15. [15]
    Meise, R., Taylor, B. A. &Vogt, D., Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces.Manuscripta Math., 90 (1996), 449–464.MathSciNetGoogle Scholar
  16. [16]
    Ortner, N. &Wagner, P., On the fundamental solution of the operator of dynamic linear thermoelasticity.J. Math. Anal. Appl., 170 (1992), 524–550.CrossRefMathSciNetGoogle Scholar
  17. [17]
    Prasolov, V. &Solovyev, Y.,Elliptic Functions and Elliptic Integrals. Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  18. [18]
    Schwartz, L.,Théorie des distributions, nouvelle édition. Hermann, Paris, 1966.Google Scholar
  19. [19]
    Wagner, P., A fundamental solution of N. Zeilon's operator. To appear inMath. Scand. Google Scholar
  20. [20]
    Zeilon, N., Sur les intégrales fondamentales des équations à charactéristique réelle de la Physique Mathématique.Ark. Mat. Astr. Fys., 9:18 (1913–14), 1–70.Google Scholar

Copyright information

© Institut Mittag-Leffler 1999

Authors and Affiliations

  • Peter Wagner
    • 1
  1. 1.Institut für Mathematik und GeometrieUniversität InnsbruckInnsbruckAustria

Personalised recommendations