Acta Mathematica

, Volume 173, Issue 1, pp 61–101 | Cite as

The topology of the space of rational maps into generalized flag manifolds

  • C. P. Boyer
  • B. M. Mann
  • J. C. Hurtubise
  • R. J. Milgram


Manifold Flag Manifold Generalize Flag Manifold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHS]Atiyah, M. F., Hitchin, N. J. &Singer, I., Self-duality in four dimensional Riemannian geometry.Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461.MathSciNetCrossRefMATHGoogle Scholar
  2. [AJ]Atiyah, M. F. &Jones, J. D., Topological aspects of Yang-Mills theory.Comm. Math. Phys., 61 (1978), 97–118.CrossRefMathSciNetMATHGoogle Scholar
  3. [BE]Baston, R. J. & Eastwood, M. G.,The Penrose Transform. Oxford University Press, 1989.Google Scholar
  4. [BHMM]Boyer, C. P., Hurtubise, J. C., Mann, B. M. &Milgram, R. J., The topology of instanton moduli spaces. I: The Atiyah-Jones conjecture.Ann. of Math., 137 (1993), 561–609.CrossRefMathSciNetMATHGoogle Scholar
  5. [BM]Boyer, C. P. &Mann, B. M., Monopoles, non-linear σ models, and two-fold loop spaces.Comm. Math. Phys., 115 (1988), 571–594.CrossRefMathSciNetMATHGoogle Scholar
  6. [Bo]Borel, A., Kählerian coset spaces of semisimple Lie groups.Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 1147–1151.MATHMathSciNetGoogle Scholar
  7. [C2M2]Cohen, F. R., Cohen, R. L., Mann, B. M. &Milgram, R. J., The topology of rational functions and divisors of surfaces.Acta Math., 166, (1991), 163–221.MathSciNetMATHGoogle Scholar
  8. [D]Donaldson, S. K., Nahm's equations and the classfication of monopoles.Comm. Math. Phys., 96 (1988), 387–407.CrossRefMathSciNetGoogle Scholar
  9. [Gr]Gravesen, J., On the topology of spaces of holomorphic maps.Acta Math., 162 (1989), 247–286.MATHMathSciNetGoogle Scholar
  10. [Gul]Guest, M. A., Topology of the space of absolute minima of the energy functional.Amer. J. Math., 106 (1984), 21–42.MATHMathSciNetGoogle Scholar
  11. [Gu2]Guest, M. A. The topology of the space of rational curves on a toric variety. Preprint, Rochester University, 1993.Google Scholar
  12. [HM1]Hurtubise, J. C. &Murray, M. K., On the construction of monopoles for the classical groups.Comm. Math. Phys., 122 (1989), 35–89.CrossRefMathSciNetMATHGoogle Scholar
  13. [HM2]— Monopoles and their spectral data.Comm. Math. Phys., 133 (1990), 487–508.CrossRefMATHMathSciNetGoogle Scholar
  14. [Hum]Humphreys, J. E.,Linear Algebraic Groups. Springer-Verlag, 1975.Google Scholar
  15. [Hur1]Hurtubise, J. C., Instantons and jumping lines.Comm. Math. Phys., 105 (1986), 107–122.CrossRefMATHMathSciNetGoogle Scholar
  16. [Hur2]— The classification of monopoles for the classical groups.Comm. Math. Phys., 120 (1989), 613–641.CrossRefMATHMathSciNetGoogle Scholar
  17. [I]Iitaka, S.,Algebraic Geometry Springer-Verlag, New York, 1982.MATHGoogle Scholar
  18. [Ki1]Kirwan, F. C., On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli of vector bundles.Ark. Mat., 24 (1986), 221–275.CrossRefMATHMathSciNetGoogle Scholar
  19. [Ki2]Kirwan, F. C. Geometric invariant theory and the Atiyah-Jones conjecture. Preprint, Oxford University, 1992.Google Scholar
  20. [Ko]Kodaira, K., A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds.Ann. of Math., 75 (1962), 146–162.CrossRefMATHMathSciNetGoogle Scholar
  21. [Mc]McDuff, D., Configuration spaces of positive and negative particles.Topology, 14 (1975), 91–107.CrossRefMATHMathSciNetGoogle Scholar
  22. [MF]Mumford, D. &Fogarty, J.,Geometric Invariant Theory, 2nd edition. Springer-Verlag, New York, 1982.MATHGoogle Scholar
  23. [Mi]Milgram, R. J., Iterated loop spaces.Ann. of Math., 84 (1966), 386–403.CrossRefMATHMathSciNetGoogle Scholar
  24. [MM1]Mann, B. M. &Milgram, R. J., Some spaces of holomorphic maps to complex Grassmann manifolds.J. Differential Geom., 33 (1991), 301–324.MathSciNetMATHGoogle Scholar
  25. [MM2]— On the moduli space of SU(n) monopoles and holomorphic maps to flag manifolds.J. Differential Geom., 38 (1993), 39–103.MATHMathSciNetGoogle Scholar
  26. [MM3]— The topology of rational maps to Grassmannians and a homotopy theoretic proof of the Kirwan stability theorem.Contemp. Math. AMS, 146 (1993), 251–275.MATHGoogle Scholar
  27. [Mu]Murray, M. K., Stratifying monopoles and rational maps.Comm. Math. Phys., 125 (1989), 661–674.CrossRefMATHMathSciNetGoogle Scholar
  28. [RR]Ramanan, S. &Ramanathan, A., Projective normality of flag varieties and Schubert varieties.Invent. Math., 79 (1985), 217–224.CrossRefMathSciNetMATHGoogle Scholar
  29. [S]Segal, G., The topology of rational functions.Acta Math., 143 (1979), 39–72.MATHMathSciNetGoogle Scholar
  30. [Ta1]Taubes, C. H., Monopoles and maps fromS 2 ofS 2; the topology of configuration space.Comm. Math. Phys., 95 (1984), 345–391.CrossRefMATHMathSciNetGoogle Scholar
  31. [Ta2]— The stable topology of self-dual moduli spaces.J. Differential Geom., 29 (1989), 163–230.MATHMathSciNetGoogle Scholar
  32. [Ti]Tian, Y., The based SU(n)-instanton moduli spaces.Math. Ann., 298 (1994), 117–139.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1994

Authors and Affiliations

  • C. P. Boyer
    • 1
  • B. M. Mann
    • 1
  • J. C. Hurtubise
    • 2
  • R. J. Milgram
    • 1
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueU.S.A.
  2. 2.Department of MathematicsMcGill UniversityMontrealCanada
  3. 3.Department of MathematicsStanford UniversityStanford

Personalised recommendations