Acta Mathematica

, Volume 193, Issue 2, pp 269–296 | Cite as

Bi-parameter paraproducts

  • Camil Muscalu
  • Jill Pipher
  • Terence Tao
  • Christoph Thiele
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Auscher, P., Hofmann, S., Muscalu, C., Tao, T. &Thiele, C., Carleson measures, trees, extrapolation, andT(b) theorems.Publ. Mat., 46 (2002), 257–325.MathSciNetMATHGoogle Scholar
  2. [2]
    Chang, S.-Y. A. &Fefferman, R., Some recent developments in Fourier analysis andH p-theory on product domains.Bull. Amer. Math. Soc., 12 (1985), 1–43.MathSciNetMATHGoogle Scholar
  3. [3]
    Christ, M. &Journé, J.-L., Polynomial growth estimates for multilinear singular integral operators.Acta Math., 159 (1987), 51–80.MathSciNetMATHGoogle Scholar
  4. [4]
    Fefferman, C., On the divergence of multiple Fourier series.Bull. Amer. Math. Soc., 77 (1971), 191–195.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Fefferman, C. &Stein, E. M., Some maximal inequalities.Amer. J. Math., 93 (1971), 107–115.MathSciNetMATHGoogle Scholar
  6. [6]
    Ferguson, S. &Lacey, M., A characterization of product BMO by commutators.Acta Math., 189 (2002), 143–160.MathSciNetMATHGoogle Scholar
  7. [7]
    Grafakos, L. &Torres, R. H., Multilinear Calderón-Zygmund theory.Adv. Math., 165 (2002), 124–164.CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Journé, J.-L., Calderón-Zygmund operators on product spaces.Rev. Mat. Iberoamericana, 1 (1985), 55–91.MATHMathSciNetGoogle Scholar
  9. [9]
    Kato, T. &Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations.Comm. Pure Appl. Math., 41 (1988), 891–907.MathSciNetMATHGoogle Scholar
  10. [10]
    Kenig, C. E., On the local and global well-posedness theory for the KP-I equation. Preprint, 2003.Google Scholar
  11. [11]
    Kenig, C. E. &Stein, E. M., Multilinear estimates and fractional integration.Math. Res. Lett., 6 (1999), 1–15.MathSciNetMATHGoogle Scholar
  12. [12]
    Lacey, M. &Thiele, C., On Calderón's conjecture.Ann. of Math., 149 (1999), 475–496.CrossRefMathSciNetMATHGoogle Scholar
  13. [13]
    Meyer, Y. &Coifman, R. R.,Ondelettes et opérateurs, III:Opérateurs multilinéaires. Hermann, Paris, 1991.Google Scholar
  14. [14]
    Muscalu, C., Tao, T. &Thiele, C., Multilinear operators given by singular multipliers.J. Amer. Math. Soc., 15 (2002), 469–496.CrossRefMathSciNetMATHGoogle Scholar
  15. [15]
    —, A counterexample to a multilinear endpoint question of Christ and Kiselev.Math. Res. Lett., 10 (2003), 237–246.MathSciNetMATHGoogle Scholar
  16. [16]
    —,L p estimates for the “biest”, II: The Fourier case.Math. Ann., 329 (2004), 427–461.MathSciNetMATHGoogle Scholar
  17. [17]
    Pipher, J., Journé's covering lemma and its extension to higher dimensions.Duke Math. J., 53 (1986), 683–690.CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    Stein, E. M.,Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math. Ser., 43. Princeton Univ. Press, Princeton, NJ, 1993.MATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2004

Authors and Affiliations

  • Camil Muscalu
    • 1
    • 4
  • Jill Pipher
    • 2
  • Terence Tao
    • 3
  • Christoph Thiele
    • 4
  1. 1.Cornell UniversityIthacaUSA
  2. 2.Department of MathematicsBrown UniversityProvidenceUSA
  3. 3.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  4. 4.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations