Advertisement

Acta Mathematica

, Volume 193, Issue 2, pp 141–174 | Cite as

A Hopf differential for constant mean curvature surfaces inS2×R andH2×R

  • Uwe Abresch
  • Harold Rosenberg
Article

Keywords

Curvature Surface Hopf Differential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abresch, U., Constant mean curvature tori in terms of elliptic functions.J. Reine Angew. Math., 374 (1987), 169–192.zbMATHMathSciNetGoogle Scholar
  2. [2]
    —, Old and new doubly periodic solutions of the sinh-Gordon equation, inSeminar on New Results in Nonlinear Partial Differential Equations (Bonn, 1984), pp. 37–73. Aspects Math., E10. Vieweg, Braunschweig, 1987.Google Scholar
  3. [3]
    Alexandrov, A. D., Uniqueness theorems for surfaces in the large, V.Vestnik Leningrad. Univ., 13:19 (1958), 5–8 (Russian).MathSciNetGoogle Scholar
  4. [4]
    —, Uniqueness theorems for surfaces in the large, I–V.Amer. Math. Soc. Transl., 21 (1962), 341–416.MathSciNetGoogle Scholar
  5. [5]
    —, A characteristic property of spheres.Ann. Mat. Pura Appl., 58 (1962), 303–315.MathSciNetGoogle Scholar
  6. [6]
    Bobenko, A. I., All constant mean curvature tori inR 3,S 3,H 3 in terms of theta-functions.Math. Ann., 290 (1991), 209–245.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    Burstall, F. E., Ferus, D., Pedit, F. &Pinkall, U., Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras.Ann. of Math., 138 (1993), 173–212.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Collin, P., Hauswirth, L. &Rosenberg, H., The geometry of finite topology Bryant surfaces.Ann. of Math., 153 (2001), 623–659.MathSciNetGoogle Scholar
  9. [9]
    Figueroa, C. B., Mercuri, F. &Pedrosa, R. H. L., Invariant surfaces of the Heisenberg groups.Ann. Mat. Pura Appl., 177 (1999), 173–194.MathSciNetGoogle Scholar
  10. [10]
    Gauss, C. F., Allgemeine Auflösung der Aufgabe: Die Theile einer gegebenen Fläche auf einer andern gegebenen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in der Kleinsten Theilen, ähnlich wird (Kopenhagener Preisschrift).Astron. Abhandl., 3 (1825), 1–30;Phil. Mag., 4 (1828), 104–113, 206–215;Carl Friedrich Gauss Werke, Vierter Band, pp. 189–216. Der Königlichen Gesellschaft der Wissenschaften, Göttingen, 1873.Google Scholar
  11. [11]
    Hauswirth, L., Roitman, P. &Rosenberg, H., The geometry of finite topology Bryant surfaces quasi-embedded in a hyperbolic manifold.J. Differential Geom., 60 (2002), 55–101.MathSciNetGoogle Scholar
  12. [12]
    Hitchin, N. J., Harmonic maps from a 2-torus to the 3-sphere.J. Differential Geom., 31 (1990), 627–710.zbMATHMathSciNetGoogle Scholar
  13. [13]
    Hopf, H.,Differential Geometry in the Large. Lecture Notes in Math., 1000. Springer, Berlin, 1983.Google Scholar
  14. [14]
    Hsiang, W.-T. &Hsiang, W.-Y., On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces, I.Invent. Math., 98 (1989), 39–58.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Hsiang, W.-Y., On soap bubbles and isoperimetric regions in noncompact symmetric spaces, I.Tôhoku Math. J., 44 (1992), 151–175.zbMATHMathSciNetGoogle Scholar
  16. [16]
    Kapouleas, N., Complete embedded minimal surfaces of finite total curvature.J. Differential Geom., 47 (1997), 95–169.zbMATHMathSciNetGoogle Scholar
  17. [17]
    de Lira, J., To appear.Google Scholar
  18. [18]
    Mazzeo, R. &Pacard, F., Constant mean curvature surfaces with Delaunay ends.Comm. Anal. Geom., 9 (2001), 169–237.MathSciNetGoogle Scholar
  19. [19]
    Nelli, B. &Rosenberg, H., Minimal surfaces inH 2 ×R.Bull. Braz. Math. Soc., 33 (2002), 263–292.CrossRefMathSciNetGoogle Scholar
  20. [20]
    Pedrosa, R. H. L. &Ritoré, M., Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems.Indiana Univ. Math. J., 48 (1999), 1357–1394.CrossRefMathSciNetGoogle Scholar
  21. [21]
    Pinkall, U. &Sterling, I., On the classification of constant mean curvature tori.Ann. of Math., 130 (1989), 407–451.CrossRefMathSciNetGoogle Scholar
  22. [22]
    Rosenberg, H., Bryant surfaces, inThe Global Theory of Minimal Surfaces in Flat Spaces (Martina Franca, 1999), pp. 67–111. Lecture Notes in Math., 1775. Springer, Berlin, 2002.Google Scholar
  23. [23]
    —, Minimal surfaces inM 2 ×R.Illinois J. Math., 46 (2002), 1177–1195.zbMATHMathSciNetGoogle Scholar
  24. [24]
    Wells, R. O.,Differential Analysis on Complex Manifolds, 2nd edition. Graduate Texts in Math., 65. Springer, New York-Berlin, 1980.Google Scholar
  25. [25]
    Wente, H., Counterexample to a conjecture of H. Hopf.Pacific J. Math., 121 (1986), 193–243.zbMATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2004

Authors and Affiliations

  • Uwe Abresch
    • 1
  • Harold Rosenberg
    • 2
  1. 1.Fakultät für MathematikRuhr-Universität BochumBochumGermany
  2. 2.Centre de Mathématiques de JussieuUniversité de Paris VII-Denis DiderotParis Cedex 05France

Personalised recommendations