Acta Mathematica

, Volume 159, Issue 1, pp 215–259 | Cite as

Prescribing Gaussian curvature on S2

  • Sun-yung Alice Chang
  • Paul C. Yang
Article

Keywords

Gaussian Curvature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aubin, T., Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire par la transformation conforme de la courbure scalaire.J. Funct. Anal., 32 (1979), 148–174.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    Aubin, T.,The scalar curvature in differential geometry and relativity. Holland 1976, pp. 5–18.Google Scholar
  3. [3]
    Bahri, A. &Coron, J. M., Une théorie des points critiques à l'infini pour l'equation de Yamabe et le problème de Kazdan-Warner.C. R. Acad. Sci. Paris Sér. I, 15 (1985), 513–516.MathSciNetGoogle Scholar
  4. [4]
    Chang, S. Y. A. & Yang, P. C., Conformal deformation of metric onS 2. To appear inJournal of Diff. Geometry.Google Scholar
  5. [5]
    Escobar, J. F. & Schoen, R., Conformal metrics with prescribed scalar curvature. Preprint.Google Scholar
  6. [6]
    Hartman, P.,Ordinary differential equations. Basel Birkhäuser (1982).Google Scholar
  7. [7]
    Hersch, J., Quatre propriétés isopérimétriques de membranes sphériques homogènes.C. R. Acad. Sci. Paris Ser. I, 270 (1970), 1645–1648.MATHMathSciNetGoogle Scholar
  8. [8]
    Hong, C. W., A best constant and the Gaussian curvature. Preprint.Google Scholar
  9. [9]
    Kazdan, J. &Warner, F., Curvature functions for compact 2-manifold.Ann. of Math. (2), 99 (1974), 14–47.CrossRefMathSciNetGoogle Scholar
  10. [10]
    — Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature.Ann. of Math. (2), 101 (1975), 317–331.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Moser, J., A sharp form of an inequality by N. Trudinger.Indiana Univ. Math. J., 20 (1971), 1077–1091.CrossRefMATHGoogle Scholar
  12. [12]
    — On a non-linear problem in differential geometry.Dynamical Systems (M. Peixoto, editor), Academic Press, N.Y. (1973).Google Scholar
  13. [13]
    Mostow, G. D., Some new decomposition theorems for semi-simple groups.Mem. Amer. Math. Soc., 14 (1955).Google Scholar
  14. [14]
    Onofri, E., On the positivity of the effective action in a theory of random surface.Comm. Math. Phys., 86 (1982), 321–326.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    Onofri, E. &Virasoro, M., On a formulation of Polyakov's string theory with regular classical solutions.Nuclear Phys. B, 201 (1982), 159–175.CrossRefMathSciNetGoogle Scholar
  16. [16]
    Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature.J. Differential Geom., 20 (1985), 479–495.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1987

Authors and Affiliations

  • Sun-yung Alice Chang
    • 1
  • Paul C. Yang
    • 2
  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations