Acta Mathematica

, Volume 93, Issue 1, pp 67–119 | Cite as

Finite dimensional convolution algebras

  • Edwin Hewitt
  • Herbert S. Zuckerman
Article

Keywords

Convolution Convolution Algebra Dimensional Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    I. V. Arnol'd, Ideale in kommutativen Halbgruppen.Mat. Sbornik, 36 (1929), 401–407.MATHGoogle Scholar
  2. [2].
    S. D. Berman, O nekotoryh svoîstvah celoĉislennyh gruppovyh kolec.Doklady Akad. Nauk SSSR (N. S.), 91 (1953), 7–9.MATHMathSciNetGoogle Scholar
  3. [3].
    —, Ob isomorfizme centrov gruppovyh, kolecp-grupp.Doklady Akad. Nauk SSSR (N. S.), 91 (1953), 185–187.MATHMathSciNetGoogle Scholar
  4. [4].
    Arne Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle.Nionde Skandinaviska Matematikerkongressen, 1938, 345–366.Google Scholar
  5. [5].
    S. Bochner,Vorlesungen über Fouriersche Integrale. Akademische Verlagsgesellschaft, Leipzig 1932. (Reprint 1948, Chelsea Publishing Co., New York.)Google Scholar
  6. [6].
    N. Bourbaki,Éléments de mathématique. Livre II, Ch. II. Algèbre linéaire. Act. Sci. et Ind. 1032, Hermann et Cie Paris, 1947.Google Scholar
  7. [7].
    R. C. Buck, Generalized group algebras.Proc. Nat. Acad. Sci. U.S.A., 36 (1950), 747–749.MATHMathSciNetGoogle Scholar
  8. [8].
    K. S. Carman, J. C. Harden, andE. E. Posey,Appendix [To the authors' master's theses, University of Tenn.,c. 1949].Google Scholar
  9. [9].
    A. H. Clifford, Matrix representations of completely simple semigroups.Amer. J. Math., 64 (1942), 327–342.MATHMathSciNetGoogle Scholar
  10. [10].
    —, Semigroups admitting relative inverses.Ann. of Math. 2 Ser., 42 (1941), 1037–1049.MATHMathSciNetGoogle Scholar
  11. [11].
    Jean Dieudonné, Sur le socle d'un anneau et les anneaux simples, infinis.Bull. Soc. Math. France, 70 (1942), 46–75.MATHMathSciNetGoogle Scholar
  12. [12].
    P. G. L. Dirichlet, Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données.Jour. für die reine u. angew. Math., 4 (1829), 157–169.MATHGoogle Scholar
  13. [13].
    Paul Dubreil,Algèbre, Tome I. Cahiers Scientifiques publiés sous la direction de M. Gaston Julia, Fasc. XX. Gauthier-Villars et Cie., Paris, 1946.MATHGoogle Scholar
  14. [14].
    George E. Forsythe,SWAC computes all 126 distinct semigroups, of order 4. To appear.Google Scholar
  15. [15].
    I. M. Gel'fand, Über absolut konvergente trigonometrische Reihen und Integrale.Mat. Sbornik, 9 (51) (1941), 51–66.MATHGoogle Scholar
  16. [16].
    Roger Godement, Les fonctions de type positif et la théorie des groupes.Trans. Amer. Math. Soc. 63 (1948), 1–84.CrossRefMATHMathSciNetGoogle Scholar
  17. [17].
    J. A. Green andDavid Rees, On semi-groups in whichxr=x.Proc. Cambridge Phil. Soc., 48 (1952), 35–40.MathSciNetMATHGoogle Scholar
  18. [18].
    Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms.Ann. of Math. 2 Ser., 57 (1953), 458–474.MATHMathSciNetGoogle Scholar
  19. [19].
    Edwin, Hewitt andHerbert S. Zuckerman. On convolution algebrasProc. Int. Congr. Math., 1950, Vol. I, p. 455.Google Scholar
  20. [20].
    Charles Hopkins, Rings with minimal condition for left ideals.Ann. of Math. 2 Ser., 40 (1939), 712–730.MATHMathSciNetGoogle Scholar
  21. [21].
    Nathan Jacobson, The radical and semi-simplicity for arbitrary rings.Amer. J. Math., 67 (1945), 300–320.MATHMathSciNetGoogle Scholar
  22. [22].
    Børge Jessen andAurel Wintner, Distribution functions and the Riemann zeta function.Trans. Amer. Math. Soc., 38 (1935), 48–88.CrossRefMathSciNetMATHGoogle Scholar
  23. [23].
    Yukiyosi, Kawada, On the group ring of a topological group.Math. Japonicae 1 (1948), 1–5.MATHMathSciNetGoogle Scholar
  24. [24].
    Lynn H. Loomis,An introduction to abstract harmonic analysis. D. Van Nostrand Company, New York, 1953.MATHGoogle Scholar
  25. [25].
    E. S. Lyapin, Polugruppy, vo vseh predstavleniyah kotoryh operatory imeyut nepodvižnye toĉki I.Mat. Sbornik, 34 (76) (1954), 289–306.MATHMathSciNetGoogle Scholar
  26. [26].
    H. B. Mann, On certain systems which are almost groups.Bull. Amer. Math. Soc., 50 (1944), 879–881.MATHMathSciNetCrossRefGoogle Scholar
  27. [27].
    David McLean, Idempotent semigroups.Amer. Math. Monthly, 61 (1954), 110–113.CrossRefMATHMathSciNetGoogle Scholar
  28. [28].
    L. J. Paige, Power associative loop algebras.Bull. Amer. Math. Soc., 60 (1954), 141 (abstract).Google Scholar
  29. [29].
    Sam Perlis andGordon L. Walker, Abelian group algebras of finite order.Trans. Amer. Math. Soc., 68 (1950), 420–426.CrossRefMathSciNetMATHGoogle Scholar
  30. [30].
    A. R. Poole, Finite ova.Amer. J. Math., 59 (1937), 23–32.MATHMathSciNetGoogle Scholar
  31. [31].
    David Rees, Note on semi-groups.Proc. Cambridge Phil. Soc., 37 (1941), 434–435.MATHMathSciNetCrossRefGoogle Scholar
  32. [32].
    —, On semi-groups.Proc. Cambridge Phil. Soc., 36 (1940), 387–400.MATHMathSciNetCrossRefGoogle Scholar
  33. [33].
    —, On the ideal structure of a semi-group satisfying a cancellation law.Quart. J. Math., Oxford, Ser. 19 (1948), 101–108.MATHMathSciNetGoogle Scholar
  34. [34].
    G. F. B. Riemann,Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe, Ges. Werke, repr. Dover Publications, New York 1953, 227–271.Google Scholar
  35. [35].
    Laurent Schwartz,Théorie des distributions. Hermann et Cie., Paris, Tome I, 1950, Tome II, 1951.MATHGoogle Scholar
  36. [36].
    Ŝtefan Schwarz, K teorii periodiĉeskih polugrupp.Czech. Math. J., 3 (78) (1953), 7–21.MATHGoogle Scholar
  37. [37].
    Ŝtefan Schwarz,Téoria pologrup. Sbornik Prác Prírodoveckej Fakulty Slovenskej Univerzity v. Bratislave no. 6 (1943), 64 p.Google Scholar
  38. [38].
    Ŝtefan Schwarz, Über Charaktere kommutativer Halbgruppen.Proc. Int. Congr. Math. 1954, Vol. I.Google Scholar
  39. [39].
    I. E. Segal, The group algebra of a locally compact group.Trans. Amer. Math. Soc., 61 (1947), 69–105.CrossRefMATHMathSciNetGoogle Scholar
  40. [40].
    Marshall H. Stone, The generalized Weierstrass approximation theorem.Math. Mag., 21 (1948), 167–183, 237–254.MathSciNetCrossRefGoogle Scholar
  41. [41].
    —, The theory of representations for Boolean algebras.Trans. Amer. Math. Soc., 40 (1936), 37–111.CrossRefMATHMathSciNetGoogle Scholar
  42. [42].
    A. Suŝkeviĉ [Suschkewitsch], Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit.Math. Ann., 99 (1928), 30–50.CrossRefMathSciNetGoogle Scholar
  43. [43].
    — Über die Matrizendarstellungen der verallgemeinerten Gruppen.Comm. Soc. Math. Harkov, IV Ser, 6 (1933), 27–38.Google Scholar
  44. [44].
    Takayuki Tamura, Some remarks on semi-groups and all types of semi-groups of order 2, 3.Jour. Gakugei Tokushima Univ., 3 (1953), 1–11.MATHGoogle Scholar
  45. [45].
    Vito Volterra andJoseph Pérès,Leçons sur la composition des fonctions permutables. Collection de monographies sur la théorie des fonctions publiée sous la direction de M. Émile Borel. Gauthier-Villars et Cie., Paris, 1924.Google Scholar
  46. [46].
    B. L. van der Waerden,Moderne Algebra. II. Auflage. Teil II. Grundlehren der Math. Wiss., Springer, Berlin, 1937. Reprint Ungar Publishing Co., New York, 1943.Google Scholar
  47. [47].
    K. Weierstrass,Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen reeller Argumente. Sitzungsberichte der Königlichen Preussischen Akademie der Wiss. zu Berlin, 1885, 633–640, 789–806. Mat. Werke, Mayer u. Müller, Berlin, 1903.Google Scholar
  48. [48].
    André Weil,L'intégration dans les groupes topologiques et ses applications. Hermann et Cie., Paris, 1940 (Act. Sci. et Ind. No. 869).Google Scholar
  49. [49].
    Hermann Weyl,Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig, 1928.MATHGoogle Scholar
  50. [50].
    Hermann Weyl andF. Peter, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinueirlichen Gruppe.Math. Ann., 97 (1927), 737–755.CrossRefMathSciNetMATHGoogle Scholar
  51. [51].
    Antoni, Zygmund,Trigonometrical series. Monografje Matematyczne, Warszawa-Lwów, 1935.Google Scholar
  52. [52].
    Antoni Zygmund andA. P. Calderon, On the existence of certain singular integrals.Acta Math. 88 (1952), 85–139.MathSciNetMATHGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri 1955

Authors and Affiliations

  • Edwin Hewitt
    • 1
  • Herbert S. Zuckerman
    • 1
  1. 1.The University of WashingtonSeattleUSA

Personalised recommendations