Advertisement

Acta Mathematica

, Volume 93, Issue 1, pp 67–119 | Cite as

Finite dimensional convolution algebras

  • Edwin Hewitt
  • Herbert S. Zuckerman
Article

Keywords

Convolution Convolution Algebra Dimensional Convolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    I. V. Arnol'd, Ideale in kommutativen Halbgruppen.Mat. Sbornik, 36 (1929), 401–407.MATHGoogle Scholar
  2. [2].
    S. D. Berman, O nekotoryh svoîstvah celoĉislennyh gruppovyh kolec.Doklady Akad. Nauk SSSR (N. S.), 91 (1953), 7–9.MATHMathSciNetGoogle Scholar
  3. [3].
    —, Ob isomorfizme centrov gruppovyh, kolecp-grupp.Doklady Akad. Nauk SSSR (N. S.), 91 (1953), 185–187.MATHMathSciNetGoogle Scholar
  4. [4].
    Arne Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle.Nionde Skandinaviska Matematikerkongressen, 1938, 345–366.Google Scholar
  5. [5].
    S. Bochner,Vorlesungen über Fouriersche Integrale. Akademische Verlagsgesellschaft, Leipzig 1932. (Reprint 1948, Chelsea Publishing Co., New York.)Google Scholar
  6. [6].
    N. Bourbaki,Éléments de mathématique. Livre II, Ch. II. Algèbre linéaire. Act. Sci. et Ind. 1032, Hermann et Cie Paris, 1947.Google Scholar
  7. [7].
    R. C. Buck, Generalized group algebras.Proc. Nat. Acad. Sci. U.S.A., 36 (1950), 747–749.MATHMathSciNetGoogle Scholar
  8. [8].
    K. S. Carman, J. C. Harden, andE. E. Posey,Appendix [To the authors' master's theses, University of Tenn.,c. 1949].Google Scholar
  9. [9].
    A. H. Clifford, Matrix representations of completely simple semigroups.Amer. J. Math., 64 (1942), 327–342.MATHMathSciNetGoogle Scholar
  10. [10].
    —, Semigroups admitting relative inverses.Ann. of Math. 2 Ser., 42 (1941), 1037–1049.MATHMathSciNetGoogle Scholar
  11. [11].
    Jean Dieudonné, Sur le socle d'un anneau et les anneaux simples, infinis.Bull. Soc. Math. France, 70 (1942), 46–75.MATHMathSciNetGoogle Scholar
  12. [12].
    P. G. L. Dirichlet, Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données.Jour. für die reine u. angew. Math., 4 (1829), 157–169.MATHGoogle Scholar
  13. [13].
    Paul Dubreil,Algèbre, Tome I. Cahiers Scientifiques publiés sous la direction de M. Gaston Julia, Fasc. XX. Gauthier-Villars et Cie., Paris, 1946.MATHGoogle Scholar
  14. [14].
    George E. Forsythe,SWAC computes all 126 distinct semigroups, of order 4. To appear.Google Scholar
  15. [15].
    I. M. Gel'fand, Über absolut konvergente trigonometrische Reihen und Integrale.Mat. Sbornik, 9 (51) (1941), 51–66.MATHGoogle Scholar
  16. [16].
    Roger Godement, Les fonctions de type positif et la théorie des groupes.Trans. Amer. Math. Soc. 63 (1948), 1–84.CrossRefMATHMathSciNetGoogle Scholar
  17. [17].
    J. A. Green andDavid Rees, On semi-groups in whichxr=x.Proc. Cambridge Phil. Soc., 48 (1952), 35–40.MathSciNetMATHGoogle Scholar
  18. [18].
    Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms.Ann. of Math. 2 Ser., 57 (1953), 458–474.MATHMathSciNetGoogle Scholar
  19. [19].
    Edwin, Hewitt andHerbert S. Zuckerman. On convolution algebrasProc. Int. Congr. Math., 1950, Vol. I, p. 455.Google Scholar
  20. [20].
    Charles Hopkins, Rings with minimal condition for left ideals.Ann. of Math. 2 Ser., 40 (1939), 712–730.MATHMathSciNetGoogle Scholar
  21. [21].
    Nathan Jacobson, The radical and semi-simplicity for arbitrary rings.Amer. J. Math., 67 (1945), 300–320.MATHMathSciNetGoogle Scholar
  22. [22].
    Børge Jessen andAurel Wintner, Distribution functions and the Riemann zeta function.Trans. Amer. Math. Soc., 38 (1935), 48–88.CrossRefMathSciNetMATHGoogle Scholar
  23. [23].
    Yukiyosi, Kawada, On the group ring of a topological group.Math. Japonicae 1 (1948), 1–5.MATHMathSciNetGoogle Scholar
  24. [24].
    Lynn H. Loomis,An introduction to abstract harmonic analysis. D. Van Nostrand Company, New York, 1953.MATHGoogle Scholar
  25. [25].
    E. S. Lyapin, Polugruppy, vo vseh predstavleniyah kotoryh operatory imeyut nepodvižnye toĉki I.Mat. Sbornik, 34 (76) (1954), 289–306.MATHMathSciNetGoogle Scholar
  26. [26].
    H. B. Mann, On certain systems which are almost groups.Bull. Amer. Math. Soc., 50 (1944), 879–881.MATHMathSciNetCrossRefGoogle Scholar
  27. [27].
    David McLean, Idempotent semigroups.Amer. Math. Monthly, 61 (1954), 110–113.CrossRefMATHMathSciNetGoogle Scholar
  28. [28].
    L. J. Paige, Power associative loop algebras.Bull. Amer. Math. Soc., 60 (1954), 141 (abstract).Google Scholar
  29. [29].
    Sam Perlis andGordon L. Walker, Abelian group algebras of finite order.Trans. Amer. Math. Soc., 68 (1950), 420–426.CrossRefMathSciNetMATHGoogle Scholar
  30. [30].
    A. R. Poole, Finite ova.Amer. J. Math., 59 (1937), 23–32.MATHMathSciNetGoogle Scholar
  31. [31].
    David Rees, Note on semi-groups.Proc. Cambridge Phil. Soc., 37 (1941), 434–435.MATHMathSciNetCrossRefGoogle Scholar
  32. [32].
    —, On semi-groups.Proc. Cambridge Phil. Soc., 36 (1940), 387–400.MATHMathSciNetCrossRefGoogle Scholar
  33. [33].
    —, On the ideal structure of a semi-group satisfying a cancellation law.Quart. J. Math., Oxford, Ser. 19 (1948), 101–108.MATHMathSciNetGoogle Scholar
  34. [34].
    G. F. B. Riemann,Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe, Ges. Werke, repr. Dover Publications, New York 1953, 227–271.Google Scholar
  35. [35].
    Laurent Schwartz,Théorie des distributions. Hermann et Cie., Paris, Tome I, 1950, Tome II, 1951.MATHGoogle Scholar
  36. [36].
    Ŝtefan Schwarz, K teorii periodiĉeskih polugrupp.Czech. Math. J., 3 (78) (1953), 7–21.MATHGoogle Scholar
  37. [37].
    Ŝtefan Schwarz,Téoria pologrup. Sbornik Prác Prírodoveckej Fakulty Slovenskej Univerzity v. Bratislave no. 6 (1943), 64 p.Google Scholar
  38. [38].
    Ŝtefan Schwarz, Über Charaktere kommutativer Halbgruppen.Proc. Int. Congr. Math. 1954, Vol. I.Google Scholar
  39. [39].
    I. E. Segal, The group algebra of a locally compact group.Trans. Amer. Math. Soc., 61 (1947), 69–105.CrossRefMATHMathSciNetGoogle Scholar
  40. [40].
    Marshall H. Stone, The generalized Weierstrass approximation theorem.Math. Mag., 21 (1948), 167–183, 237–254.MathSciNetCrossRefGoogle Scholar
  41. [41].
    —, The theory of representations for Boolean algebras.Trans. Amer. Math. Soc., 40 (1936), 37–111.CrossRefMATHMathSciNetGoogle Scholar
  42. [42].
    A. Suŝkeviĉ [Suschkewitsch], Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit.Math. Ann., 99 (1928), 30–50.CrossRefMathSciNetGoogle Scholar
  43. [43].
    — Über die Matrizendarstellungen der verallgemeinerten Gruppen.Comm. Soc. Math. Harkov, IV Ser, 6 (1933), 27–38.Google Scholar
  44. [44].
    Takayuki Tamura, Some remarks on semi-groups and all types of semi-groups of order 2, 3.Jour. Gakugei Tokushima Univ., 3 (1953), 1–11.MATHGoogle Scholar
  45. [45].
    Vito Volterra andJoseph Pérès,Leçons sur la composition des fonctions permutables. Collection de monographies sur la théorie des fonctions publiée sous la direction de M. Émile Borel. Gauthier-Villars et Cie., Paris, 1924.Google Scholar
  46. [46].
    B. L. van der Waerden,Moderne Algebra. II. Auflage. Teil II. Grundlehren der Math. Wiss., Springer, Berlin, 1937. Reprint Ungar Publishing Co., New York, 1943.Google Scholar
  47. [47].
    K. Weierstrass,Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen reeller Argumente. Sitzungsberichte der Königlichen Preussischen Akademie der Wiss. zu Berlin, 1885, 633–640, 789–806. Mat. Werke, Mayer u. Müller, Berlin, 1903.Google Scholar
  48. [48].
    André Weil,L'intégration dans les groupes topologiques et ses applications. Hermann et Cie., Paris, 1940 (Act. Sci. et Ind. No. 869).Google Scholar
  49. [49].
    Hermann Weyl,Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig, 1928.MATHGoogle Scholar
  50. [50].
    Hermann Weyl andF. Peter, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinueirlichen Gruppe.Math. Ann., 97 (1927), 737–755.CrossRefMathSciNetMATHGoogle Scholar
  51. [51].
    Antoni, Zygmund,Trigonometrical series. Monografje Matematyczne, Warszawa-Lwów, 1935.Google Scholar
  52. [52].
    Antoni Zygmund andA. P. Calderon, On the existence of certain singular integrals.Acta Math. 88 (1952), 85–139.MathSciNetMATHGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri 1955

Authors and Affiliations

  • Edwin Hewitt
    • 1
  • Herbert S. Zuckerman
    • 1
  1. 1.The University of WashingtonSeattleUSA

Personalised recommendations